Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(15): 10755-10760, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38572344

RESUMO

A direct and practical method for photocatalyzed hydrodecarboxylation of fatty acids is reported herein. The catalytic system consists of a commercially available acridinium salt as the photocatalyst and thiophenol as the Hydrogen Atom Transfer (HAT) co-catalyst. Results evidenced that Cn-1 alkanes were obtained in yields up to 77%. Furthermore, the protocol was employed for a complex mixture of fatty acids bio-derived from a real sample of licuri oil to obtain hydrocarbons in the range of C9-C17 with high selectivity and excellent conversion (>90%). This work provides a powerful strategy for producing drop-in biofuels under mild conditions. Finally, an energetic assessment of our proposed protocol (∼22.9 kW h) reveals the benefit of a sustainable production of renewable hydrocarbons.

2.
Chemosphere ; 349: 140834, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042421

RESUMO

Beauty salons (BS) are places that deal with a wide range of cosmetics with potentially hazardous chemicals, and their effluent should be properly treated before going to the sewage system, once it represents characteristics of industrial wastewater. This work provides an extensive characterization of a BS effluent and its respective electrochemical treatment by comparing NaCl, Na2SO4, and Na2S2O8 as supporting electrolytes with a boron-doped diamond (BDD) as anode, applying 10 or 30 mA cm-2 of current density (j). The inclusion of UVC irradiation was also performed but the improvements achieved in removing the organic matter were null or lower. The analysis of chemical oxygen demand (COD) removal, energy consumption, and total current efficiency (TCE) was required to prove the efficacy of the processes and the comparative study of the performance of different technologies. Precipitate analysis was also done due to the high turbidity of the raw effluent and the appearance of a precipitate before and during the electrolysis, mainly with Na2S2O8. The precipitate confirmed the presence of silicates and small amounts of heavy metals. The results clearly showed that 6 h of treatment with Na2SO4 achieved 58% of COD removal with an energy consumption of about 0.52 kWh m-3, being the best electrolyte option for treating BS effluent by applying 10 mA cm-2. Under these experimental conditions, the final wastewater can be directly discharged into the sewage system with a lower amount of visible precipitate, and with 73% less turbidity. The treatment here proposed can be used as an alternative to decision-makers and governments once it can be a step further in the implementation of better and advanced politics of water sanitation.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Oxirredução , Esgotos , Sulfatos/análise , Poluentes Químicos da Água/análise , Eletrólitos , Diamante/química , Eletrodos
3.
Chemistry ; 29(67): e202302330, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37646537

RESUMO

A mild, practical, and environmentally friendly method for the hydrodecarboxylation of fatty acids using an acridine-based photoredox catalyst and thiophenol was developed. Cn-1 alkanes were synthesized in good to excellent yields (up to 99 %) from C10-C18 saturated fatty acids under visible light irradiation (405 nm). The developed protocol was employed for a mixture of fatty acids obtained from the hydrolysis of Licuri oil, affording a mixture of C9-C17 hydrocarbons in quantitative yield, which demonstrates the potential application of the method to produce drop-in biofuels.

4.
MethodsX ; 11: 102300, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37577171

RESUMO

Aiming the decentralization of monitoring policies and to facilitate the work of researchers, mainly in developing countries, the present method deals with the explanation of a simple and rapid protocol for chemical oxygen demand (COD) analysis through the use of digital smartphone devices coupled with a camera and a free app available for Android operating system that recognizes HSV (hue, saturation, value). The calibration of the method is done based on the theoretical values of potassium hydrogen phthalate for a proper and reliable build of the calibration curve by using the smartphone-based technique and the digested samples of COD. The coefficient of determination (R2) attained a value upper than 0.99, providing a high confidence levels, and the method achieved 97% of average accuracy in samples with COD values ranging from 0 to 150 mg L-1. Finally, the procedure here presented can be a great support for scientific laboratories and monitoring policies, once it can efficiently substitute expensive spectrophotometers and can improve and ensure the sustainable management of water sanitation, which is one of the sustainable goals proposed by the United Nations.•COD measurements, based on the use of a simple smartphone with a camera, can be a promising way for environmental analysis when spectrophotometers are not available, such as decentralized approaches.•The use of smartphone protocol is a novel initiative to fulfill sustainable development goal 6 on clean water and sanitation.•The smartphone is capable to read the difference of HSV values efficiently and can substitute the use of expensive spectrophotometers.

5.
Nanomaterials (Basel) ; 13(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770344

RESUMO

The nanostructured lanthanide-silica materials of the Ln-SiO2 type (Ln = La, Ce, Pr, Nd, Eu, Gd, Dy, Yb, Lu) were synthesized by the hydrothermal method at 100 °C, using cetyltrimethylammonium as a structural template, silica gel and sodium silicate as a source of silicon, and lanthanide oxides, with Si/Ln molar ratio = 50. The resulting materials were calcined at 500 °C using nitrogen and air, and characterized by X-ray diffraction (XRD), Fourier-Transform infrared absorption spectroscopy, scanning electron microscopy, thermogravimetry (TG), surface area by the BET method and acidity measurements by n-butylamine adsorption. The XRD and chemical analysis indicated that the SiO2 presented a hexagonal structure and the incorporation of lanthanides in the structure changes the properties of the Ln-SiO2 materials. The heavier the lanthanide element, the higher the Si/Ln ratio. The TG curves showed that the decomposition of the structural template occurs in the materials at temperatures below 500 °C. The samples showed variations in specific surface area, mean pore diameter and silica wall thickness, depending on the nature of the lanthanide. The incorporation of different lanthanides in the silica generated acid sites of varied strength. The hydrothermal stability of the Ln-SiO2 materials evaluated at high temperatures, evidenced that the properties can be controlled for application in adsorption and catalysis processes.

6.
RSC Adv ; 12(43): 27889-27894, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36320252

RESUMO

An operationally simple and highly selective method for the decarboxylation of fatty acids under remarkably mild conditions is described herein. The activation of the aliphatic carboxylic acids by esterification with N-hydroxyphthalimide (NHPI) enabled efficient deoxygenation to synthesize n-alkanes in up to 67% yield, employing inexpensive PMHS as a hydrogen source, NiCl2·6H2O, bipyridine, and zinc in THF. In contrast to the conventional thermo-catalytic approaches, this protocol does not require high temperature and high pressure of hydrogen gas to deoxygenate biomass-derived carboxylic acids, thus representing an attractive alternative for producing drop-in biofuels.

7.
ACS Omega ; 4(14): 15849-15855, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31592170

RESUMO

Aviation industry has the challenge of halving CO2 emissions by 2050, as compared to 2005. An alternative are drop-in biofuels, which are sustainable and fully compatible with aircraft engines and also can be mixed with fossil jet fuel. Among the feedstock for biojet fuel production, licuri (Syagrus coronata) can be highlighted as most of its fatty acids are in the jet fuel range. Thereby, this work investigated the composition and physicochemical characterization of licuri oil and licuri biodiesel, both with satisfactory results according to international standards, with the purpose of obtaining hydrocarbons in the range of jet fuel from these feedstock, by catalytic deoxygenation. The semi-batch reaction, using a 5% Pd/C catalyst at 300 °C and 207 psi, produced n-alkanes with a conversion of up to 39.2%. The n-alkane selectivity was 80.7%, in addition to CO2 selectivity of 83.4% for biodiesel, indicating the preference for the decarboxylation pathway and also confirming licuri as a potential raw material for biojet fuel.

8.
AAPS PharmSciTech ; 19(6): 2585-2597, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29916194

RESUMO

Amphotericin B (AmB), a potent antifungal drug, presents physicochemical characteristics that impair the development of suitable dosage forms. In order to overcome the AmB insolubility, several lipid carriers such as microemulsions have been developed. In this context, the bullfrog oil stands out as an eligible oily phase component, since its cholesterol composition may favor the AmB incorporation. Thus, the aim of this study was to develop a microemulsion based on bullfrog oil containing AmB. Moreover, its thermal stability, antifungal activity, and cytotoxicity in vitro were evaluated. The microemulsion formulation was produced using the pseudo-ternary phase diagram (PTPD) approach and the AmB was incorporated based on the pH variation technique. The antifungal activity was evaluated by determination of minimal inhibitory concentration (MIC) against different species of Candida spp. and Trichosporon asahii. The bullfrog oil microemulsion, stabilized with 16.8% of a surfactant blend, presented an average droplet size of 26.50 ± 0.14 nm and a polydispersity index of 0.167 ± 0.006. This system was able to entrap AmB up to 2 mg mL-1. The use of bullfrog oil as oily phase allowed an improvement of the thermal stability of the system. The MIC assay results revealed a growth inhibition for different strains of Candida spp. and were able to enhance the activity of AmB against T. asahii. The microemulsion was also able to reduce the AmB toxicity. Finally, the developed microemulsion showed to be a suitable system to incorporate AmB, improving the system's thermal stability, increasing the antifungal activity, and reducing the toxicity of this drug.


Assuntos
Anfotericina B/síntese química , Antifúngicos/síntese química , Portadores de Fármacos/síntese química , Emulsões/síntese química , Nanopartículas/química , Óleos/síntese química , Anfotericina B/administração & dosagem , Animais , Antifúngicos/administração & dosagem , Candida/efeitos dos fármacos , Candida/fisiologia , Portadores de Fármacos/administração & dosagem , Emulsões/administração & dosagem , Eritrócitos/efeitos dos fármacos , Eritrócitos/fisiologia , Humanos , Testes de Sensibilidade Microbiana/métodos , Nanopartículas/administração & dosagem , Óleos/administração & dosagem , Rana catesbeiana
9.
Molecules ; 22(4)2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28394282

RESUMO

Bullfrog oil (BO), a natural product obtained from recycling of adipose tissue from the amphibian Rana catesbeiana Shaw, has been recently evaluated as a therapeutic activity ingredient. This work aimed to evaluate the long-term and accelerated thermal oxidative stabilities of this product, which is a promising raw material for emulsion technology development. BO was extracted from amphibian adipose tissue at 70 °C with a yield of 60% ± 0.9%. Its main fatty acid compounds were oleic (30.0%) and eicosapentaenoic (17.6%) acids. Using titration techniques, BO showed peroxide, acid, iodine and saponification indices of 1.92 mEq·O2/kg, 2.95 mg·KOH/g oil, 104.2 g I2/100 g oil and 171.2 mg·KOH/g oil, respectively. In order to improve the accelerated oxidative stability of BO, synthetic antioxidants butylhydroxytoluene (BHT) and buthylhydroxyanisole (BHA) were used. The addition of BHT increased the oxidation induction time compared to the pure oil, or the oil containing BHA. From the results, the best oil-antioxidant mixture and concentration to increase the oxidative stability and allow the oil to be a stable raw material for formulation purposes was derived.


Assuntos
Produtos Biológicos/química , Óleos/química , Rana catesbeiana , Animais , Ácidos Graxos/química , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA