Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 197: 105651, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072526

RESUMO

Solenopsis invicta is a main issue in southern China and is causing significant damage to the local ecological environment. The extensive use of insecticides has resulted in the development of tolerance in S. invicta. In our study, ten S. invicta colonies from Sichuan Province exhibited varying degrees of tolerance against flonicamid, with LC50 values from 0.49 mg/L to 8.54 mg/L. The sensitivity of S. invicta to flonicamid significantly increased after treatment with the P450 enzyme inhibitor piperonyl butoxide (PBO). Additionally, the activity of P450 in S. invicta was significantly enhanced after being treated with flonicamid. Flonicamid induced the expression levels of CYP4aa1, CYP9e2, CYP4C1, and CYP6A14. The expression levels of these P450 genes were significantly higher in the tolerant colonies compared to the sensitive colonies, and the relative copy numbers of CYP6A14 in the tolerant colonies were 2.01-2.15 fold. RNAi feeding treatment effectively inhibited the expression of P450 genes, thereby reducing the tolerance of S. invicta against flonicamid. In addition, the overexpression of CYP6A14 in D. melanogaster resulted in reduced sensitivity to flonicamid. Our investigations revealed hydrophobic interactions between flonicamid and seven amino acid residues of CYP6A14, along with the formation of a hydrogen bond between Glu306 and flonicamid. Our findings suggest that flonicamid can effectively control S. invicta and P450 plays a pivotal role in the tolerance of S. invicta against flonicamid. The overexpression of CYP6A14 also increased tolerance to flonicamid.


Assuntos
Formigas , Inseticidas , Animais , Formigas Lava-Pés , Drosophila melanogaster , Inseticidas/toxicidade
2.
J Agric Food Chem ; 71(39): 14179-14191, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37660343

RESUMO

Sogatella furcifera (Horváth), which mainly threatens rice, shows various levels of pesticide resistance due to long-term overuse of pesticides. Our resistance monitoring of 20 field populations in Sichuan, China, revealed that they were susceptible to highly resistant toward pymetrozine (0.4-142.2 RR), and JL21 reached the highest level of resistance. The JL21 population exhibited cross-resistance to triflumezopyrim and dinotefuran but sensitivity to sulfoxaflor, acetamiprid, clothianidin, and nitenpyram. The increased P450 activity were support to involve in pymetrozine resistance by detoxification enzyme activities and synergist determination. Among 16 candidate P450 genes, CYP6FJ3 (5.25-fold) was the most up-regulated in JL21, while no significant change was found after LC25 pymetrozine treatment. Furthermore, the knockdown by RNAi and heterologous overexpression by the GAL4/UAS system confirmed that the CYP6FJ3 overexpression was involved in the pymetrozine resistance, and recombination in vitro confirmed that CYP6FJ3 could hydroxylate pymetrozine. Therefore, the overexpression of CYP6FJ3 promotes pymetrozine metabolic resistance in S. furcifera.

3.
Front Neurosci ; 17: 1203104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383107

RESUMO

Recent years have witnessed a significant advancement in brain imaging techniques that offer a non-invasive approach to mapping the structure and function of the brain. Concurrently, generative artificial intelligence (AI) has experienced substantial growth, involving using existing data to create new content with a similar underlying pattern to real-world data. The integration of these two domains, generative AI in neuroimaging, presents a promising avenue for exploring various fields of brain imaging and brain network computing, particularly in the areas of extracting spatiotemporal brain features and reconstructing the topological connectivity of brain networks. Therefore, this study reviewed the advanced models, tasks, challenges, and prospects of brain imaging and brain network computing techniques and intends to provide a comprehensive picture of current generative AI techniques in brain imaging. This review is focused on novel methodological approaches and applications of related new methods. It discussed fundamental theories and algorithms of four classic generative models and provided a systematic survey and categorization of tasks, including co-registration, super-resolution, enhancement, classification, segmentation, cross-modality, brain network analysis, and brain decoding. This paper also highlighted the challenges and future directions of the latest work with the expectation that future research can be beneficial.

5.
Front Physiol ; 14: 1180655, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215171

RESUMO

The fall armyworm, Spodoptera frugiperda (Noctuidae: Lepidoptera), is a wide-reaching notorious insect pest of important cereal crops, which has developed resistance to multiple classes of insecticides. It invaded the Sichuan Province of China in 2019. In this study, we performed resistance monitoring of insecticides for 11 field-collected populations from Sichuan, and all the populations were susceptible to emamectin benzoate and chlorpyrifos. The variations in resistance level to indoxacarb (resistance ratio (RR), 9.23-45.53-fold), spinetoram (RR, 4.32-18.05-fold), and chlorantraniliprole (RR, 2.02-10.39-fold) were observed among these populations. To investigate the resistance mechanism of chlorantraniliprole, synergism tests were performed and showed that piperonyl butoxide had a slight synergistic effect on chlorantraniliprole for the QJ-20 population (1.43-fold) in moderate resistance (RR, 10.39-fold) compared with the treatment group without synergist. Furthermore, the expression scanning for resistance-related genes showed that five P450 genes (CYP6AE43, CYP321A8, CYP305A1, CYP49A1, and CYP306A1) and the ryanodine receptor gene (Ryr, chlorantraniliprole target) were overexpressed in the QJ-20 population. These results indicated that the fall armyworm in Sichuan has exhibited diverse susceptibilities to several classes of insecticides, and the overexpression of Ryr and several P450 genes may contribute to the development of resistance in S. frugiperda to chlorantraniliprole.

6.
Front Physiol ; 14: 1155455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064906

RESUMO

Introduction: Spodoptera frugiperda is an important nomadic agricultural pest with a diverse host range and resistance against several insecticides. The current study investigated the life history traits of two strains of the field-collected population against chlorantraniliprole using an age-stage two-sex life table. Method: For this, we established the chlorantraniliprole-susceptible (Crp-SUS G12), and chlorantraniliprole-reduced susceptible (Crp-RES G12) strains derived from the sixth generation of the QJ-20 population having a resistance ratio (RR) of 10.39-fold, compared with the reported susceptible population. Results: The results showed that the chlorantraniliprole-reduced susceptible strain attained a 4.0-fold RR, while the chlorantraniliprole-susceptible strain attained an RR of 0.85-fold, having overlapped fiducial limits (FLs) with the referred susceptible baseline. Meanwhile, the present study revealed that the development time of the susceptible strain was significantly longer than that of the reduced susceptible strain. Similarly, the mean longevity, adult pre-oviposition period (APOP), and total pre-oviposition period (TPOP) of the female chlorantraniliprole-susceptible strain were considerably longer than those of the female chlorantraniliprole-reduced susceptible strain. Contrarily, the population parameters, including the intrinsic rate of increase (r), finite rate of increase (λ), and net reproductive rate (R), of the chlorantraniliprole-susceptible strain were considerably lower than those of the chlorantraniliprole-reduced susceptible strain, while the mean generation time (T) of the chlorantraniliprole-susceptible strain was substantially longer than the chlorantraniliprole-reduced susceptible strain. The age-stage characteristic survival rate (s xj ) and age-stage characteristic life expectancy (e xj ) of the chlorantraniliprole-susceptible strain were longer than those of the chlorantraniliprole-reduced susceptible strain, but the age-stage-specific reproductive value (v xj ) of the chlorantraniliprole-susceptible strain was shorter than that of the chlorantraniliprole-reduced susceptible strain. Moreover, the contents of vitellogenin (Vg) and VgR in the chlorantraniliprole-reduced susceptible strain were higher than those in the chlorantraniliprole-susceptible strain. Discussion: These findings showed that reducing susceptibility to chlorantraniliprole promoted population growth in S. frugiperda. Therefore, this study could provide conceptual support for the integrated pest management (IPM) approach to control S. frugiperda in the field.

7.
Int J Biol Macromol ; 241: 124575, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37100329

RESUMO

Spodoptera frugiperda is a serious threat to various crops, such as corn and rice, and results in severe economic losses. Herein, a chitin synthase sfCHS highly expressed in the epidermis of S. frugiperda was screened, and when interfered by an sfCHS-siRNA nanocomplex, most individuals could not ecdysis (mortality rate 53.3 %) or pupate (abnormal pupation 80.6 %). Based on the results of structure-based virtual screening, cyromazine (CYR, binding free energy -57.285 kcal/mol) could inhibit ecdysis (LC50, 19.599 µg/g). CYR-CS/siRNA nanoparticles encapsulating CYR and SfCHS-siRNA with chitosan (CS) were successfully prepared, as confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and 74.9 mg/g CYR was characterized in the core of CYR-CS/siRNA by high-performance liquid chromatography and Fourier transform infrared spectroscopy. Small amounts of prepared CYR-CS/siRNA containing only 1.5 µg/g CYR could better inhibit chitin synthesis in the cuticle and peritrophic membrane (mortality rate 84.4 %). Therefore, chitosan/siRNA nanoparticle-loaded pesticides were useful for pesticide reduction and comprehensive control of S. frugiperda.


Assuntos
Quitosana , Praguicidas , Animais , Quitosana/química , RNA Interferente Pequeno/genética , Spodoptera/genética
8.
Brain Inform ; 10(1): 2, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36625937

RESUMO

Addiction in the brain is associated with adaptive changes that reshape addiction-related brain regions and lead to functional abnormalities that cause a range of behavioral changes, and functional magnetic resonance imaging (fMRI) studies can reveal complex dynamic patterns of brain functional change. However, it is still a challenge to identify functional brain networks and discover region-level biomarkers between nicotine addiction (NA) and healthy control (HC) groups. To tackle it, we transform the fMRI of the rat brain into a network with biological attributes and propose a novel feature-selected framework to extract and select the features of addictive brain regions and identify these graph-level networks. In this framework, spatial attention recurrent network (SARN) is designed to capture the features with spatial and time-sequential information. And the Bayesian feature selection(BFS) strategy is adopted to optimize the model and improve classification tasks by restricting features. Our experiments on the addiction brain imaging dataset obtain superior identification performance and interpretable biomarkers associated with addiction-relevant brain regions.

10.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36430247

RESUMO

Long-term pesticide-driven selection pressure is one of the main causes of insect outbreaks. In this study, we found that low doses of triflumezopyrim could increase the fecundity of white-backed planthoppers (Sogatella furcifera). By continuously screening 20 generations with a low dose of triflumezopyrim, a triflumezopyrim-resistant strain (Tri-strain, resistance ratio = 20.9-fold) was obtained. The average oviposition quantity and longevity of the Tri-strain (208.77 eggs and 21.31 days, respectively) were significantly higher than those of the susceptible strain (Sus-strain) (164.62 eggs and 17.85 days, respectively). To better understand the mechanism underlying the effects on reproduction, we detected the expression levels of several reproduction-related transcription factors in both the Tri- and Sus-strains. Ultraspiracle (USP) was significantly overexpressed in the Tri-strain. Knockdown of USP by RNAi severely inhibited the moulting process of S. furcifera and disrupted the development of female adult ovaries. Among the potential downstream target genes of USP, Kr-h1 (0.19-fold), Cht8 (0.56-fold) and GPCR A22 (0.31-fold) showed downregulated expression after USP-RNAi. In contrast, the expression of EcR (2.55-fold), which forms heterodimers with USP, was significantly upregulated. Furthermore, RNAi was performed on Kr-h1 in the Tri-strain, and the results show that larval moulting and the development of female adult ovaries were inhibited, consistent with the USP-RNAi results in S. furcifera. These results suggest that the transcription factors USP and Kr-h1 play important roles in the reproductive development of S. furcifera, and overexpression of USP and Kr-h1 in the Tri-resistant strain may result in reproductive outbreaks of pests.


Assuntos
Hemípteros , Reprodução , Feminino , Animais , Receptores Citoplasmáticos e Nucleares , Surtos de Doenças , Fatores de Transcrição/genética
11.
Curr Issues Mol Biol ; 44(10): 4859-4876, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36286045

RESUMO

The resistance prevalence of chemical fungicides has caused increasingly serious agro-ecological environmental problems. However, there are few previous reports about resistance to succinate dehydrogenase (SDHI) or sterol demethylation inhibitor (DMI) in Rhizoctonia solani, one of the main agro-diseases. In this study, the fungicide resistance of 122 R. solani isolates in Sichuan Province was monitored by the mycelial growth rate method. Results showed that all isolates were susceptible to hexaconazole and most isolates were susceptible to thifluzamide, except for the field isolate MSRS-2-7 due to a moderate resistance to thifluzamide (16.43-fold resistance ratio, RR), compared to the sensitivity baseline of thifluzamide (0.042 µg/mL EC50 values). On the contrary, many isolates showed moderate or high resistance to tebuconazole (10.59- to 60.78-fold RR), reaching EC50 values of 0.54~3.10 µg/mL, especially for a highly resistant isolate LZHJ-1-8 displaying moderate resistance to epoxiconazole (35.40-fold RR due to a 3.54 µg/mL EC50 value). The fitness determination found that the tebuconazole-resistant isolates showed higher fitness cost with these characteristics, including a lower growth rate, higher relative electric conductivity, an increased ability to tolerate tebuconazole, and high osmotic pressure. Four new mutations of cytochrome P450 sterol 14α-demethylase (CYP51), namely, S94A, N406S, H793R, and L750P, which is the target for DMI fungicides, was found in the tebuconazole-resistant isolates. Furthermore, the lowest binding energy with tebuconazole was also found in the LZHJ-1-8 isolate possessing all the mutations through analyses with Discovery Studio software. Therefore, these new mutation sites of CYP51 may be linked to the resistance against tebuconazole, and its application for controlling R. solani should be restricted in some areas.

12.
Sensors (Basel) ; 22(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35890861

RESUMO

The aim of local path planning for unmanned surface vehicles (USVs) is to avoid unknown dynamic or static obstacles. However, current relative studies have not fully considered the impact of ocean environmental factors which significantly increase the control difficulty and collision risk of USVs. Therefore, this work studies two ocean environmental factors, namely, wave and current, given that they both have a significant impact on USVs. Furthermore, we redesign a kinematic model of an USV and the evaluation function of a classical and practical local path planning method based on the dynamic window approach (DWA). As shown by the results of the simulations, the path length was impacted mainly by the intensity of the environmental load and slightly by the direction of the environmental load, but the navigation time was significantly influenced by both. Taking the situation in still water as a benchmark in terms of the intensity and direction of the environmental factors, the maximum change rates of the path length were 8.6% and 0.6%, respectively, but the maximum change rates of the navigating time were 17.9% and 25.6%, separately. In addition, the average calculation time of each cycle was only 0.0418 s, and the longest time did not exceed the simulation time corresponding to a single cycle of 0.1 s. This method has proven to be a good candidate for real-time local path planning of USVs since it systematically considers the impact of waves and currents on the navigation of USVs, and thus ensures that USVs can adjust to the planned path in time and avoid obstacles when navigating in the real ocean environment.


Assuntos
Simulação por Computador
13.
Pestic Biochem Physiol ; 185: 105150, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35772843

RESUMO

Chilo suppressalis Walker (Lepidoptera: Crambidae) is one of the most destructive pests occurring in the rice-growing regions of Asia. Parasitoids, mainly egg parasitoids, have been of interest for several years even with practical used cases. Therefore, the potential impact of insecticides on natural enemies needs great attention. In this study, chlorantraniliprole was evaluated for its impact on C. suppressalis and two dominant parasitic wasps. Bioassays showed that chlorantraniliprole had negligible toxicity to Eriborus terebrans but was significantly toxic to Chelonus munakatae; the mortality exceeded 50% when the concentration reached 46.83 ng/cm2. Enzyme assays suggested that the significantly different carboxylesterase activity may be involved in the high-level detoxification metabolism of E. terebrans. According to the results of enzyme gene correlation analysis, P450s may be the dominant factor in the detoxification metabolism of C. munakatae. In addition, the ryanodine receptor C-terminus of C. suppressalis (CsRyR), C. munakatae (CmRyR) and E. terebrans (EtRyR) were successfully cloned. Different amino acids at resistance mutation I4758 M between susceptible C. suppressalis (I) and parasitic wasps (M) may be related to susceptibility differences. Simulated docking showed that CsRyR and CmRyR can interact with chlorantraniliprole but not EtRyR. More interaction forces were formed between CsRyR and chlorantraniliprole than CmRyR. Furthermore, a Pi-Pi T-shape formed between 73PHE in CsRyR and the benzene ring in chlorantraniliprole. These results indicated that both detoxification metabolism and the target site could mediate the susceptibility difference between C. suppressalis and its parasitic wasps.


Assuntos
Inseticidas , Lepidópteros , Mariposas , Vespas , Animais , China , Resistência a Inseticidas/genética , Inseticidas/toxicidade , ortoaminobenzoatos/toxicidade
14.
Ecotoxicol Environ Saf ; 238: 113575, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35500402

RESUMO

Sogatella furcifera is one of the main agricultural pests in many Asian countries, bringing about enormous injury. A triflumezopyrim-resistant (Tri) strain of S. furcifera was established through continuous screening in laboratory. The determination of synergist and enzyme activity indicated that P450s, especially for the upregulation expression of CYPSF01, played a key role in the increased resistance, confirmed by RNAi, and the recombinant protein of CYPSF01 and NADPH-P450 reductase was able to degrade triflumezopyrim. CYPSF01 had an obviously co-expression relationship with nuclear receptor ultraspiracle (USP), which were all significantly up-regulated when exposed to triflumezopyrim. Further, a USP-binding motif MA0534.1 was enriched from the upregulated peaks by Assay for Transposase Accessible Chromatin (ATAC-seq) analysis, which exited in the peaks located on the promoter of CYPSF01; the yeast one-hybrid experiments confirmed that USP could bind to the CYPSF01 promoter. And the USP interference significantly down-regulated CYPSF01 expression, and resulted in the significantly increasing sensitivity to triflumezopyrim, its mortality rate increased 28.37%. Therefore, the overexpression of USP could cause to the overexpression of CYPSF01, ultimately resulting in the resistance to triflumezopyrim in S. furcifera.


Assuntos
Hemípteros , Inseticidas , Animais , Hemípteros/metabolismo , Inseticidas/metabolismo , Piridinas/metabolismo , Pirimidinonas , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
15.
Pest Manag Sci ; 78(7): 2851-2859, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35393666

RESUMO

BACKGROUND: Laodelphax striatellus (Fallén) (Hemiptera: Delphacidae) is one of the most important insect pests of rice, and it has been able to develop strong resistance to many insecticides. Triflumezopyrim, a new type of mesoionic insecticide developed by Corteva Agriscience, showed high biological activity in controlling piercing-sucking insect pests such as planthopper and leafhopper. RESULTS: In this study, we continuously selected a susceptible laboratory stain (Unsel) of L. striatellus for 16 generations by exposing it to triflumezopyrim in the laboratory. A 45.1-fold triflumezopyrim-resistant strain (Tri-sel) was established, in which cross-resistance to nitenpyram and acetamiprid was not detected. The realized heritability (h2 ) of the Tri-sel strain was estimated at 0.13. The mortalities of the testing F1 (the offspring of a cross between Unsel and Tri-sel strains) suggested that the resistance of L. striatellus to triflumezopyrim was autosomal and incompletely dominant, as well as a polygenic inheritance. In addition, the results of synergist experiment showed that P450s potentially contributed to the triflumezopyrim resistance. The activities of detoxification enzymes in the Unsel and Tri-sel strains indicated that the activity of P450s in the Tri-sel strain was significantly increased, consistent with the results of synergist experiments. Furthermore, 12 P450 genes demonstrated significant up-regulation. CONCLUSIONS: L. striatellus has a certain risk of resistance to triflumezopyrim after continuous selection. Triflumezopyrim resistance did not result in cross-resistance to neonicotinoid insecticides. The up-regulation of multiple P450 genes may mediate triflumezopyrim resistance in L. striatellus. © 2022 Society of Chemical Industry.


Assuntos
Hemípteros , Inseticidas , Animais , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Piridinas , Pirimidinonas , Medição de Risco
16.
Ecotoxicol Environ Saf ; 234: 113425, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35325711

RESUMO

Spodoptera litura is a widely distributed multifeeding pest, that has developed high resistance to many chemical insecticides. In the present study, a bistrifluron-resistant (Bis-SEL) strain showing 113.8-fold resistance ratio relative to a bistrifluron-susceptible (Bis-UNSEL) strain was obtained and showed a fitness advantage (resurgence). First, we found that the observed resurgence might have resulted from Maf transcription factor overexpression in the Bis-SEL strain, which would influence the synthesis of ecdysone and chitin. Additionally, a co-expression relationship between Maf and CYP307A1 was verified by weighted correlation network analysis (WGCNA) and qRT-PCR, and the expression of CYP307A1, a key gene in ecdysone synthesis, was significantly downregulated by Maf interference. The assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and a yeast one-hybrid showed that Maf could bind to the cncc:maf-s element in the CYP307A1 promoter region. The synthesis of ecdysone, which stimulated chitin synthesis, was also decreased significantly following Maf and CYP307A1 interference. Therefore, the upregulation of Maf expression leaded to the upregulation CYP307A1 expression, which led to an increase in the synthesis of ecdysone, resulting in resurgence accompanied by resistance to bistrifluron.

17.
Math Biosci Eng ; 19(12): 13276-13293, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36654046

RESUMO

Brain community detection is an efficient method to represent the communities of brain networks. However, time-variable functions of the brain and the intricate brain community structure impose a great challenge on it. In this paper, a time-sequential graph adversarial learning (TGAL) framework is proposed to detect brain communities and characterize the structure of communities from brain networks. In the framework, a novel time-sequential graph neural network is designed as an encoder to extract efficient graph representations by spatio-temporal attention mechanism. Since it is difficult to capture the community structure, the measurable modularity loss is used to optimize by maximizing the modularity of the community. In addition, the framework employs an adversarial scheme to guide the learning of representation. The effectiveness of our model is shown through experiments on the real-world brain network datasets, and the great performance of brain community detection demonstrates the advantage of the proposed framework.


Assuntos
Encéfalo , Aprendizagem , Encéfalo/diagnóstico por imagem , Redes Neurais de Computação
18.
Biology (Basel) ; 10(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34440027

RESUMO

The white-back planthopper (WBPH), Sogatella furcifera, mainly harms rice and occurs in most rice regions in China and Asia. With the use of chemical pesticides, S. furcifera has developed varying degrees of resistance to a variety of pesticides. In our study, a chlorpyrifos-resistant population (44.25-fold) was built through six generations of screening with a sublethal dose of chlorpyrifos (LD50) from a field population. The expression levels of ten selected resistance-related P450 genes were analyzed by RT-qPCR and found that CYP408A3 and CYP6CS3 were significantly more expressed in the third instar nymphs of the XY17-G5 and XY17-G6 populations, about 25-fold more than the Sus-Lab strain, respectively (p < 0.01). To elucidate their molecular function in the development of resistance towards chlorpyrifos, we cloned two P450 full lengths and predicted their tertiary protein structures. CYP408A3 and CYP6CS3 were also downregulated after injecting dsCYP408A3, dsCYP6CS3, or their mixture compared to the control group. Moreover, the mortality rates of the dsCYP6CS3 (91.7%) and the mixture injection treatment (93.3%) treated by the LC50 concentration of chlorpyrifos were significantly higher than the blank control group (51.7%) and dsCYP408A3 injection treatment (69.3%) at 72 h (p < 0.01). Meanwhile, the P450 enzyme activities in the dsRNA treatments were lower than that in the control (XY17-G6) (p < 0.01). Therefore, the P450 gene CYP6CS3 may be one of the main genes in the development of chlorpyrifos resistance in S. furcifera.

19.
Int J Mol Sci ; 22(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068540

RESUMO

Spodopteraexigua, a multifeeding insect pest, has developed a high level of resistance to chlorantraniliprole, which is a benzoylurea insecticide that targets the ryanodine receptors (RyRs). Herein, the resistant strain (SE-Sel) and sensitive strain (SE-Sus) were obtained by bidirectional screening for six generations. The potential oviposited eggs and oviposition rate of the SE-Sel strain were dramatically lower than those of the SE-Sus strain; on the contrary, the weights of prepupae and preadult were significantly increased. As a post-mating response, the higher number of non-oviposited eggs in the SE-Sel strain was caused by a lower mating rate. In addition, the expression levels of vitellogenin (SeVg) and its receptor (SeVgR) in the SE-Sel strain were consistently lower than those in the SE-Sus strain. An RyRI4743M mutation, contributing to the resistance to chlorantraniliprole, was located in the S3 transmembrane segments and might have affected the release of calcium ions; it led to the upregulated expression of the neuropeptide SeNPF and its receptor SeNPFR, and the mating and oviposition rate were significantly recovered when the SeNPF was knocked down though RNA interference (RNAi) in the male adult of the SE-Sel strain. Moreover, the expression of the juvenile hormone-binding proteins SeJHBWDS3 and SeJHBAN in the male adult of the SE-Sel strain was significantly decreased, which proved the existence of a fitness cost from another angle. Therefore, these results indicate that the fitness cost accompanied by chlorantraniliprole resistance in S. exigua may be related to the decrease in mating desire due to SeNPF overexpression.


Assuntos
Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Spodoptera/genética , ortoaminobenzoatos/farmacologia , Animais , Proteínas de Transporte/genética , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/genética , Proteínas do Ovo/genética , Aptidão Genética/genética , Inseticidas/farmacologia , Mutação/genética , Neuropeptídeos/genética , Interferência de RNA , Receptores de Superfície Celular/genética , Receptores de Neuropeptídeos/genética , Spodoptera/efeitos dos fármacos , Vitelogeninas/genética , ortoaminobenzoatos/efeitos adversos
20.
Pest Manag Sci ; 77(7): 3458-3468, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33822459

RESUMO

BACKGROUND: Spodoptera litura is one of the major agricultural pests in China, and it has developed serious resistance to many traditional chemical insecticides. In the present study, the bistrifluron-resistant (Bis-SEL) strain accompanied by a higher oviposition, 113.8-fold RR compared to the bistrifluron-susceptible (Bis-UNSEL) strain, was obtained by bidirectional screening. A comparison of their gonad coefficiency and genes related to oviposition or resistance was used to elucidate the resurgence mechanism. RESULTS: The ovarian index, oviposition, and potential egg production in the Bis-SEL strain of female adults were significantly higher than those in the Bis-UNSEL strain, and the length of ovariole in the Bis-SEL strain was also significantly elongated. The protein contents of vitellogenin (Vg) and vitellogenin receptor (VgR) in the Bis-UNSEL strain were lower than those in the Bis-SEL strain, consistent with their gene expressions levels, and there was a significantly positive linear correlation between Vg and VgR protein contents, further confirming that resistant strains have high reproductive fitness. Moreover, the chitin synthase A in the Bis-SEL strain was clearly up-regulated, and a mutation (H866Y) near the QRRRW in the catalytic domain caused a rise in the hydrogen bond between UDP-GlcNAc and chitin synthase, and its chitin content was higher than that in the Bis-UNSEL strain. Nevertheless, the sensitivity of the Bis-SEL strain to bistrifluron was significantly recovered when it was knocked down though RNA interference. CONCLUSION: The fitness advantages of bistrifluron resistance may be related to the up-regulation and mution of chitin synthase A. © 2021 Society of Chemical Industry.


Assuntos
Quitina Sintase , Hidrocarbonetos Halogenados , Resistência a Inseticidas , Inseticidas , Spodoptera/enzimologia , Animais , China , Feminino , Aptidão Genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva , Compostos de Fenilureia/farmacologia , Spodoptera/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...