Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 924: 171653, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38485023

RESUMO

Microplastics (MPs) and perfluorinated compounds (PFAS) are widespread in the global ecosystem. MPs have the ability to adsorb organic contaminants such as perfluorooctane sulfonate (PFOS), leading to combined effects. The current work aims to explore the individual and combined toxicological effects of polystyrene (PS) and PFOS on the growth and nerves of the freshwater planarian (Dugesia japonica). The results showed that PS particles could adsorb PFOS. PS and PFOS impeded the regeneration of decapitated planarians eyespots, whereas the combined treatment increased the locomotor speed of intact planarians. PS and PFOS caused significant DNA damage, while co-treatment with different PS concentrations aggravated and attenuated DNA damage, respectively. Further studies at the molecular level have shown that PS and PFOS affect the proliferation and differentiation of neoblasts in both intact and regenerating planarians, alter the expression levels of neuronal genes, and impede the development of the nervous system. PS and PFOS not only disrupted the homeostasis of intact planarians, but also inhibited the regeneration of decapitated planarians. This study is the first to assess the multiple toxicity of PS and PFOS to planarians after combined exposure. It provides a basis for the environmental and human health risks of MPs and PFAS.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Planárias , Animais , Humanos , Planárias/fisiologia , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/metabolismo , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Ecossistema , Homeostase , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo
2.
Int J Food Microbiol ; 411: 110525, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38128262

RESUMO

Pseudomonas fluorescens is a common spoilage causing microbe found in milk. Antibiotic preservatives may cause emergence of multidrug resistance, posing food safety related risks to public health. Phage treatment may be used as an alternative to antibiotics in controlling P. fluorescens contaminations. Here we reported that P. fluorescens phage phiGM22-3 reproduced rapidly over a broad temperature range of 4 through 30°C, and the optimum growth of phiGM22-3 occurred at 10°C, indicating that it was a psychrophilic virus. Genome analysis revealed that phiGM22-3 has a genome of 42,662 bp with an identical terminal direct repeat sequence of 328 bp and encodes 58 predicted proteins. Evidence revealed that phiGM22-3 recognized lipopolysaccharides (LPS) as receptor for infection. Additionally, two phage mutants phiMX2 and phiMX8 with different host ranges were identified in the phiGM22-3 population. Phage killing efficiency of P. fluorescens cells artificially inoculated in milk was evaluated. Phage phiGM22-3 and the cocktails containing phiMX2 and phiMX8 can lyse almost 100% bacterial cells at 4°C within 24 h. Taken together, our data indicated that the psychrophilic virus phiGM22-3 and its two mutants can efficiently inhibit bacteria growth at 4°C, showing a great potential to be used as alternatives to conventional antibiotics against P. fluorescens in refrigerated foods.


Assuntos
Bacteriófagos , Pseudomonas fluorescens , Animais , Bacteriófagos/genética , Leite/microbiologia , Microbiologia de Alimentos , Antibacterianos
3.
Environ Sci Pollut Res Int ; 30(21): 60932-60945, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37042918

RESUMO

Perfluorooctane sulfonate (PFOS) is gaining widespread attention as a persistent organic pollutant with multiple mechanisms of toxicity. In this study, PFOS at different concentrations and different exposure times was used to evaluate the multiple toxicities on intact planarian Dugesia japonica. The proliferation of neoblasts, apoptosis, DNA damage and the expression levels of neuronal genes and the major genes of the Wnt pathway were effectively studied. The results demonstrated that the balance between proliferation and apoptosis of intact planarian cells was disrupted after PFOS exposure, which in turn affected tissue homeostasis and differentiation. PFOS exposure led to increased DNA damage and altered neuronal gene expression. In addition, PFOS exposure could down-regulate the expression of Wnt pathway genes, but the inhibition of the Wnt pathway by PFOS was time- and concentration-dependent. These findings suggest that PFOS has multiple toxic effects on planarians and may interfere with cell proliferation and neurodevelopment by affecting the key gene expression in the Wnt pathway, providing estimable information on the neurodevelopmental toxicity and ecotoxicity of PFOS toxicity in aquatic animals and environments.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Planárias , Animais , Planárias/fisiologia , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/metabolismo
4.
Microbiome ; 11(1): 18, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721246

RESUMO

BACKGROUND: Narrow host range is a major limitation for phage applications, but phages can evolve expanded host range through adaptations in the receptor-binding proteins. RESULTS: Here, we report that Pseudomonas phage K8 can evolve broader host range and higher killing efficiency at the cost of virion stability. Phage K8 host range mutant K8-T239A carries a mutant version of the putative baseplate wedge protein GP075, termed GP075m. While phage K8 adsorbs to hosts via the O-specific antigen of bacterial LPS, phage K8-T239A uses GP075m to also bind the bacterial core oligosaccharide, enabling infection of bacterial strains resistant to K8 infection due to modified O-specific antigens. This mutation in GP075 also alters inter-protein interactions among phage proteins, and reduces the stability of phage particles to environmental stressors like heat, acidity, and alkalinity. We find that a variety of mutations in gp075 are widespread in K8 populations, and that the gp075-like genes are widely distributed among the domains of life. CONCLUSION: Our data show that a typical life history tradeoff occurs between the stability and the host range in the evolution of phage K8. Reservoirs of viral gene variants may be widely present in phage communities, allowing phages to rapidly adapt to any emerging environmental stressors. Video Abstract.


Assuntos
Bacteriófagos , Fagos de Pseudomonas , Especificidade de Hospedeiro , Bacteriófagos/genética , Aclimatação , Genes Virais , Fagos de Pseudomonas/genética
5.
Arch Virol ; 164(3): 893-896, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30560292

RESUMO

Members of the bacterial genus Aeromonas are important aquatic pathogens that cause severe fish diseases. Here, we characterize a novel lytic phage, Aeromonas virus phiA8-29, isolated from the alimentary tract of a freshwater fish. Transmission electron microscopy showed that phiA8-29 has a long contractile tail and thus can be classified as a member of the family Myoviridae. The phage genome was identified as a double-stranded DNA molecule of 144,974 bp containing 185 open reading frames and nine tRNA-encoding genes. Comparative genomic analysis revealed that the phiA8-29 genome has little similarity to any of the currently sequenced Aeromonas phage genomes. Our data indicate that phiA8-29 is a novel lytic Myoviridae phage that does not belong to any of the known genera.


Assuntos
Aeromonas/virologia , Bacteriófagos/isolamento & purificação , Myoviridae/isolamento & purificação , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Genoma Viral , Myoviridae/classificação , Myoviridae/genética , Myoviridae/ultraestrutura , Fases de Leitura Aberta , Filogenia , Proteínas Virais/genética
6.
Nat Commun ; 9(1): 1846, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748556

RESUMO

Our understanding of the molecular mechanisms behind bacteria-phage interactions remains limited. Here we report that a small protein, SrpA, controls core cellular processes in response to phage infection and environmental signals in Pseudomonas aeruginosa. We show that SrpA is essential for efficient genome replication of phage K5, and controls transcription by binding to a palindromic sequence upstream of the phage RNA polymerase gene. We identify potential SrpA-binding sites in 66 promoter regions across the P. aeruginosa genome, and experimentally validate direct binding of SrpA to some of these sites. Using transcriptomics and further experiments, we show that SrpA, directly or indirectly, regulates many cellular processes including cell motility, chemotaxis, biofilm formation, pyocyanin synthesis and protein secretion, as well as virulence in a Caenorhabditis elegans model of infection. Further research on SrpA and similar proteins, which are widely present in many other bacteria, is warranted.


Assuntos
Proteínas de Bactérias/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Myoviridae/patogenicidade , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/fisiologia , Fatores de Transcrição/fisiologia , Animais , Biofilmes , Caenorhabditis elegans , Movimento Celular/genética , Quimiotaxia/fisiologia , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Animais de Doenças , Humanos , Myoviridae/fisiologia , Regiões Promotoras Genéticas , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/virologia , Piocianina/biossíntese , Proteínas Virais/genética , Proteínas Virais/metabolismo , Fatores de Virulência/fisiologia , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...