Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38452206

RESUMO

Proteasome-mediated degradation of chromatin-bound NF-κB is critical in terminating the transcription of pro-inflammatory genes and can be triggered by Set9-mediated lysine methylation of the RelA subunit. However, the E3 ligase targeting methylated RelA remains unknown. Here, we find that two structurally similar substrate-recognizing components of Cullin-RING E3 ligases, WSB1 and WSB2, can recognize chromatin-bound methylated RelA for polyubiquitination and proteasomal degradation. We showed that WSB1/2 negatively regulated a subset of NF-κB target genes via associating with chromatin where they targeted methylated RelA for ubiquitination, facilitating the termination of NF-κB-dependent transcription. WSB1/2 specifically interacted with methylated lysines (K) 314 and 315 of RelA via their N-terminal WD-40 repeat (WDR) domains, thereby promoting ubiquitination of RelA. Computational modeling further revealed that a conserved aspartic acid (D) at position 158 within the WDR domain of WSB2 coordinates K314/K315 of RelA, with a higher affinity when either of the lysines is methylated. Mutation of D158 abolished WSB2's ability to bind to and promote ubiquitination of methylated RelA. Together, our study identifies a novel function and the underlying mechanism for WSB1/2 in degrading chromatin-bound methylated RelA and preventing sustained NF-κB activation, providing potential new targets for therapeutic intervention of NF-κB-mediated inflammatory diseases.

2.
ACS Appl Mater Interfaces ; 13(9): 11078-11088, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33635069

RESUMO

The intrinsic advantages of metal-organic frameworks (MOFs), including extraordinarily high porosities, tailorable architectures, and diverse functional sites, make the MOFs platforms for multifunctional materials. In this study, we synthesized two kinds of isostructural NbO-type Zn2+-based MOFs, where two structurally similar tetracarboxylate ligands, 5,5'-(pyrazine-2,5-diyl)diisophthalic acid (H4PZDDI) and 5,5'-(pyridine-2,5-diyl)diisophthalic acid (H4PDDI), with pyridine or pyrazine moieties, were employed as the organic linkers. By embedding the red-emitting cationic units of pyridinium hemicyanine dye 4-[p-(dimethylamino)styryl]-1-methylpyridinium (DSM) and trivalent europium ion (Eu3+), two types of composites, DSM@ZnPZDDI and DSM@ZJU-56 and Eu3+@ZnPZDDI and Eu3+@ZJU-56, were harvested and evaluated for use as potential ratiometric temperature probes. The temperature-responsive luminescence of these dual-emitting composites was investigated, and their representative features of relative sensitivity, temperature resolution, spectral repeatability, and luminescence color change were discussed. Importantly, compared with the DSM-incorporated composites, Eu3+@ZnPZDDI and Eu3+@ZJU-56 show a much wider sensing temperature range and higher relative sensitivities, suggesting the performance of the composites can be engineered by elaborately combining the host and guest units. Given the rich choices of porous MOFs and emitting units, such a strategy can be useful in the design and preparation of multifunctional dual-emitting sensory materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...