Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 14(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38391727

RESUMO

Perinatal and neonatal ischemic stroke is a significant cause of cognitive and behavioral impairments. Further research is needed to support models of neonatal ischemic stroke and advance our understanding of the mechanisms of infarction formation following such strokes. We used two different levels of photothrombotic stroke (PTS) models to assess stroke outcomes in neonatal mice. We measured brain damage, dynamic changes in glial cells, and neuronal expression at various time points within two weeks following ischemic injury. Our results from 2,3,5-Triphenyltetrazolium chloride (TTC) staining and immunofluorescence staining showed that in the severe group, a dense border of astrocytes and microglia was observed within 3 days post infarct. This ultimately resulted in the formation of a permanent cortical cavity, accompanied by neuronal loss in the surrounding tissues. In the mild group, a relatively sparse arrangement of glial borders was observed 7 days post infarct. This was accompanied by intact cortical tissue and the restoration of viability in the brain tissue beyond the glial boundary. Additionally, neonatal ischemic injury leads to the altered expression of key molecules such as Aldh1L1 and Olig2 in immature astrocytes. In conclusion, we demonstrated the dynamic changes in glial cells and neuronal expression following different degrees of ischemic injury in a mouse model of PTS. These findings provide new insights for studying the cellular and molecular mechanisms underlying neuroprotection and neural regeneration after neonatal ischemic injury.

2.
Neurosci Bull ; 40(1): 1-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37843774

RESUMO

Astrocytes are the largest glial population in the mammalian brain. However, we have a minimal understanding of astrocyte development, especially fate specification in different regions of the brain. Through lineage tracing of the progenitors of the third ventricle (3V) wall via in-utero electroporation in the embryonic mouse brain, we show the fate specification and migration pattern of astrocytes derived from radial glia along the 3V wall. Unexpectedly, radial glia located in different regions along the 3V wall of the diencephalon produce distinct cell types: radial glia in the upper region produce astrocytes and those in the lower region produce neurons in the diencephalon. With genetic fate mapping analysis, we reveal that the first population of astrocytes appears along the zona incerta in the diencephalon. Astrogenesis occurs at an early time point in the dorsal region relative to that in the ventral region of the developing diencephalon. With transcriptomic analysis of the region-specific 3V wall and lateral ventricle (LV) wall, we identified cohorts of differentially-expressed genes in the dorsal 3V wall compared to the ventral 3V wall and LV wall that may regulate astrogenesis in the dorsal diencephalon. Together, these results demonstrate that the generation of astrocytes shows a spatiotemporal pattern in the developing mouse diencephalon.


Assuntos
Astrócitos , Neuroglia , Camundongos , Animais , Neuroglia/fisiologia , Diencéfalo , Encéfalo , Neurônios , Mamíferos
3.
Brain Pathol ; 33(5): e13186, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37401095

RESUMO

Krüppel-like Factor 7 (KLF7) is a zinc finger transcription factor that has a critical role in cellular differentiation, tumorigenesis, and regeneration. Mutations in Klf7 are associated with autism spectrum disorder, which is characterized by neurodevelopmental delay and intellectual disability. Here we show that KLF7 regulates neurogenesis and neuronal migration during mouse cortical development. Conditional depletion of KLF7 in neural progenitor cells resulted in agenesis of the corpus callosum, defects in neurogenesis, and impaired neuronal migration in the neocortex. Transcriptomic profiling analysis indicated that KLF7 regulates a cohort of genes involved in neuronal differentiation and migration, including p21 and Rac3. These findings provide insights into our understanding of the potential mechanisms underlying neurological defects associated with Klf7 mutations.


Assuntos
Transtorno do Espectro Autista , Deficiência do Fator VII , Camundongos , Animais , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Corpo Caloso/metabolismo , Neurogênese , Córtex Cerebral/metabolismo
4.
Glia ; 71(3): 602-615, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36353976

RESUMO

In response to central nervous system (CNS) injury, astrocytes go through a series of alterations, referred to as reactive astrogliosis, ranging from changes in gene expression and cell hypertrophy to permanent astrocyte borders around stromal cell scars in CNS lesions. The mechanisms underlying injury-induced reactive astrocytes in the adult CNS have been extensively studied. However, little is known about injury-induced reactive astrocytes during early postnatal development. Astrocytes in the mouse cortex are mainly produced through local proliferation during the first 2 weeks after birth. Here we show that Sox2, a transcription factor critical for stem cells and brain development, is expressed in the early postnatal astrocytes and its expression level was increased in reactive astrocytes after traumatic brain injury (TBI) at postnatal day (P) 7 in the cortex. Using a tamoxifen-induced hGFAP-CreERT2; Sox2flox/flox ; Rosa-tdT mouse model, we found that specific knockout of Sox2 in astrocytes greatly inhibited the proliferation of reactive astrocytes, the formation of glia limitans borders and subsequently promoted the tissue recovery after postnatal TBI at P7 in the cortex. In addition, we found that injury-induced glia limitans borders were still formed at P2 in the wild-type mouse cortex, and knockout of Sox2 in astrocytes inhibited the reactivity of both astrocytes and microglia. Together, these findings provide evidence that Sox2 is essential for the reactivity of astrocytes in response to the cortical TBI during the early postnatal period and suggest that Sox2-dependent astrocyte reactivity is a potential target for therapeutic treatment after TBI.


Assuntos
Astrócitos , Lesões Encefálicas Traumáticas , Fatores de Transcrição SOXB1 , Animais , Camundongos , Astrócitos/metabolismo , Lesões Encefálicas Traumáticas/patologia , Sistema Nervoso Central/metabolismo , Gliose/patologia , Neuroglia/metabolismo , Fatores de Transcrição SOXB1/genética , Camundongos Knockout
5.
Mol Brain ; 13(1): 109, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32746867

RESUMO

Leptin, secreted by peripheral adipocytes, binds the leptin receptor (Lepr) in the hypothalamus, thereby contributing to the regulation of satiety and body weight. Lepr is expressed in the embryonic brain as early as embryonic day 12.5. However, the function of Lepr in neural precursor cells in the brain has not been resolved. To address this issue, we crossed the Leprflox/flox mice with each of Shh-Cre mice (Shh, sonic hedgehog) and Nestin (Nes)-Cre mice. We found that deletion of Lepr specifically in nestin-expressing cells led to extreme obesity, but the conditional null of Lepr in Shh-expressing cells had no obvious phenotype. Moreover, the level of leptin-activated pSTAT3 decreased in the anterior and central subregions of the arcuate hypothalamus of Shh-Cre; Leprflox/flox mice compared with the controls. By contrast, in Nes-Cre; Leprflox/flox mice, the level of leptin-activated pSTAT3 decreased in all subregions including the anterior, central, and posterior arcuate hypothalamus as well as the dorsomedial, ventromedial, and median eminence of the hypothalamus, revealing that the extensive lack of Lepr in the differentiated neurons of the hypothalamus in the conditional null mice. Notably, conditional deletion of Lepr in nestin-expressing cells enhanced the differentiation of neural precursor cells into neurons and oligodendroglia but inhibited differentiation into astrocytes early in postnatal development of hypothalamus. Our results suggest that Lepr expression in neural precursor cells is essential for maintaining normal body weight as well as the differentiation of neural precursor cells to the neural/glial fate in the hypothalamus shortly after birth.


Assuntos
Diferenciação Celular , Hipotálamo/patologia , Células-Tronco Neurais/metabolismo , Neurônios/patologia , Obesidade/metabolismo , Receptores para Leptina/deficiência , Animais , Animais Recém-Nascidos , Linhagem da Célula/efeitos dos fármacos , Integrases/metabolismo , Leptina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nestina/metabolismo , Neurônios/metabolismo , Fenótipo , Fosforilação , Receptores para Leptina/metabolismo , Fator de Transcrição STAT3/metabolismo
6.
Glia ; 68(11): 2361-2376, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32469469

RESUMO

Astrocytes are fundamental for maintaining brain homeostasis and are commonly involved in the progression of neurodegenerative diseases including Alzheimer's disease (AD). In response to injury or toxic material, astrocytes undergo activation that results in hypertrophy and process ramification. Although numerous studies have shown that reactive astrocytes are intimately related to the pathogenesis of AD, their characteristic features including morphological and molecular alterations that occur during different stages of AD progression remain to be elucidated. Here, we crossed astrocyte-specific reporter mice hGFAP-CreERT2;Rosa-tdTomato with APP/PS1 mice, and then used genetic tracing to characterize the morphological profiles and expression of molecular biomarkers associated with progressive ß-amyloid deposits in the cortical region of AD mice. Expression of glutamine synthetase (GS) was lower in cortical reactive astrocytes, in contrast to the higher expression of glial fibrillary acidic protein, of APP/PS1 mice and AD patients relative to that in cortical astrocytes of wild-type mice and age-matched controls, respectively. GS activity was also decreased obviously in the cortex of APP/PS1 mice at 6 and 12 months of age relative to that in the wild-type mice of the same ages. Furthermore, cortical reactive astrocytes in APP/PS1 mice and AD patients did not undergo proliferation. Finally, based on RNA-sequencing analysis, we identified differentially expressed transcripts of signal transduction molecules involved in early induction of reactive astrocytes in the cortex of APP/PS1 mice. These findings provide a morphological and molecular basis with which to understand the function and mechanism of reactive astrocytes in the progression of AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Astrócitos/metabolismo , Proliferação de Células/genética , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...