Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2422, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499562

RESUMO

Owing to the specific electronic-redistribution and spatial proximity, diatomic catalysts (DACs) have been identified as principal interest for efficient photoconversion of CO2 into C2H4. However, the predominant bottom-up strategy for DACs synthesis has critically constrained the development of highly ordered DACs due to the random distribution of heteronuclear atoms, which hinders the optimization of catalytic performance and the exploration of actual reaction mechanism. Here, an up-bottom ion-cutting architecture is proposed to fabricate the well-defined DACs, and the superior spatial proximity of CuAu diatomics (DAs) decorated TiO2 (CuAu-DAs-TiO2) is successfully constructed due to the compact heteroatomic spacing (2-3 Å). Owing to the profoundly low C-C coupling energy barrier of CuAu-DAs-TiO2, a considerable C2H4 production with superior sustainability is achieved. Our discovery inspires a novel up-bottom strategy for the fabrication of well-defined DACs to motivate optimization of catalytic performance and distinct deduction of heteroatom synergistically catalytic mechanism.

2.
Small ; 19(26): e2207808, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942684

RESUMO

Optimizing the coordination structure and microscopic reaction environment of isolated metal sites is promising for boosting catalytic activity for electrocatalytic CO2 reduction reaction (CO2 RR) but is still challenging to achieve. Herein, a newly electrostatic induced self-assembly strategy for encapsulating isolated Ni-C3 N1 moiety into hollow nano-reactor as I-Ni SA/NHCRs is developed, which achieves FECO  of 94.91% at -0.80 V, the CO partial current density of ≈-15.35 mA cm-2 , superior to that with outer Ni-C2 N2 moiety (94.47%, ≈-12.06 mA cm-2 ), or without hollow structure (92.30%, ≈-5.39 mA cm-2 ), and high FECO of ≈98.41% at 100 mA cm-2 in flow cell. COMSOL multiphysics finite-element method and density functional theory (DFT) calculation illustrate that the excellent activity for I-Ni SA/NHCRs should be attributed to the structure-enhanced kinetics process caused by its hollow nano-reactor structure and unique Ni-C3 N1 moiety, which can enrich electron on Ni sites and positively shift d-band center to the Fermi level to accelerate the adsorption and activation of CO2 molecule and *COOH formation. Meanwhile, this strategy also successfully steers the design of encapsulating isolated iron and cobalt sites into nano-reactor, while I-Ni SA/NHCRs-based zinc-CO2 battery assembled with a peak power density of 2.54 mW cm--2 is achieved.

3.
J Colloid Interface Sci ; 613: 126-135, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35033759

RESUMO

The electrocatalytic performance of oxygen evolution reaction (OER) electrocatalysts is highly reliant on the activity of its catalytic active site, which may be augmented by raising the number of active sites. In this study, nanoscaled nickel-cobalt-iron (NiCoFe) alloy was embedded on conductive boron(B), nitrogen(N) co-doped/biomass-derived carbon aerogel as an OER electrocatalyst. The synthesized electrocatalysts were calcined under different temperatures and with variable dopants. The optimal electrocatalyst (BN/CA-NiCoFe-600) demonstrated a low overpotential of 321 mV (at current density of 10 mA cm-2) and a minute Tafel slope of 42 mV dec-1, which was even smaller than that of IrO2 and RuO2. Its mass activity and specific activity were calculated to be 201.7 A g-1, and 34.1 cm-2ECSA, respectively. Furthermore, the electrocatalyst showed excellent stability and durability. This work provides an easy and practical synthetic strategy for acquiring very active and durable electrocatalysts for OER.


Assuntos
Cobalto , Nanopartículas , Biomassa , Boro , Carbono , Ferro , Níquel , Nitrogênio , Oxigênio
4.
J Colloid Interface Sci ; 600: 412-420, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34023702

RESUMO

Metal-carbon matrix catalyst has attracted a great deal of interest in electrochemical carbon dioxide reduction reaction (CO2RR) due to its excellent electrocatalytic performance. However, the design of highly active metal-carbon matrix catalyst towards CO2RR using natural biomass and cheap chemical precursors is still under challenge. Herein, a self-assembly strategy, along with CO2 gas as acidifying agent, to fabricate silk fibroin (SF) derived carbon aerogels (CA) combining trace copper nanoparticles (SF-Cu/CA) is developed. Zinc nitrate was introduced as a pore-forming agent to further optimize the pore structure of the as-prepared catalysts to form SF-Cu/CA-1. The rich mesoporous structure and unique constitute of SF-Cu/CA-1 is conducive to exposed numerous active sites, fast electron transfer rate, and the desorption of *CO intermediate, thus leading to the electrocatalytic CO2RR of SF-Cu/CA-1 catalyst with an excellent current density of 29.4 mA cm-2, Faraday efficiency of 83.06% towards carbon monoxide (CO), high the ratio value of CO/H2 (19.58), and a long-term stability over a 10-hour period. This performance is superior to that of SF-Cu/CA catalyst (13.0 mA cm-2, FECO=58.43%, CO/H2 = 2.16). This work not only offers a novel strategy using natural biomass and cheap chemicals to build metal-carbon matrix catalyst for electrocatalytic CO2-to-CO conversion, but also is expected to promote the industrial-scale implementations of CO2 electroreduction.


Assuntos
Fibroínas , Nanopartículas , Dióxido de Carbono , Catálise , Cobre
5.
J Colloid Interface Sci ; 595: 159-167, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33819691

RESUMO

The current strategy of electrocatalytic CO2 reduction reaction (eCO2RR) to generate useful chemicals and hydrocarbons is supposed to effectively mitigate the greenhouse effect. The practical application for eCO2RR in aqueous solutions, however, still was encumbered by its high overpotential, low activity and poor selectivity due to CO2 mass transfer and intermediate stability. Electrocatalytic materials with reduced overpotential and high efficiency and selectivity are exploited for further development. Herein, Ag+ and Cu2+ precursors were co-reduced to generate Ag-Cu bimetallic aerogel after further freeze drying. Compared with Ag100 aerogel, the optimal Ag88Cu12 can effectively decrease overpotential, improve selectivity and current density, and keep electrochemical stability. At -0.89 V vs. RHE, the Faraday efficiency reached 89.40% and the CO partial current density of -5.86 mA cm-2 was obtained. The intrinsic property of metal aerogel (hydrophobic, hierarchical porous structure, conductivity), presence of rich grain boundaries and geometric effect and the introduction of Cu leading to improvement of adsorption between the catalyst and the *COOH intermediate in Ag88Cu12, contribute to the enhanced performance. Furthermore, the strategy of constructing metal aerogel will improve metal catalyst performance towards eCO2RR and pave way for further industrial applications.

6.
Mikrochim Acta ; 186(12): 853, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31781954

RESUMO

An electrochemical method was designed for the determination and simultaneous reduction of 4-nitrophenol (4-NP). A nitrogen-rich carbon aerogel was synthesized from the precursor of phenol, formaldehyde and melamine. Then, copper nanoparticles were embedded into the aerogel, and the resulting material was used to modify a glassy carbon electrode (GCE), which displayed excellent electrocatalytic activity. Sensitive determination of 4-NP by cyclic voltammetry in 0.5 M sulfuric acid was accomplished. Among the various compositions of Cux@NC, the electrode modified with Cu3@NC showed the strongest reduction peak, typically at a potential of -0.30 V vs. reversible hydrogen electrode (RHE). A further study shows the cyclic voltammetry potential range to extend from -0.46 to +0.44 V (vs. RHE) at a scan rate of 100 mV s-1. Differential pulse voltammetric determination of 4-NP gave a lower detection limit of 53 nM and a current sensitivity of 0.7 µA µM-1 cm-2. The method was applied to the determination of 4-NP in spiked water samples, with comparable results of HPLC. The excellent performance was attributed to the highly graphitized structure of the aerogel with its large surface area and small pore size, and the presence of Cu-N structures as active sites. Graphical abstractSchematic representation of electrochemical determination and reduction of 4-nitrophenol under the glassy carbon electrode modified with highly dispersed Cu nanoparticles embedded on nitrogen-rich carbon aerogel. W: working electrode; R: reference electrode; C: counter electrode). Left: copper nanoparticles embedded in an aerogel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...