Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
World J Gastrointest Oncol ; 16(5): 2018-2037, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38764813

RESUMO

BACKGROUND: Gastric cancer (GC) is a common malignancy of the digestive system. According to global 2018 cancer data, GC has the fifth-highest incidence and the third-highest fatality rate among malignant tumors. More than 60% of GC are linked to infection with Helicobacter pylori (H. pylori), a gram-negative, active, microaerophilic, and helical bacterium. This parasite induces GC by producing toxic factors, such as cytotoxin-related gene A, vacuolar cytotoxin A, and outer membrane proteins. Ferroptosis, or iron-dependent programmed cell death, has been linked to GC, although there has been little research on the link between H. pylori infection-related GC and ferroptosis. AIM: To identify coregulated differentially expressed genes among ferroptosis-related genes (FRGs) in GC patients and develop a ferroptosis-related prognostic model with discrimination ability. METHODS: Gene expression profiles of GC patients and those with H. pylori-associated GC were obtained from The Cancer Genome Atlas and Gene Expression Omnibus (GEO) databases. The FRGs were acquired from the FerrDb database. A ferroptosis-related gene prognostic index (FRGPI) was created using least absolute shrinkage and selection operator-Cox regression. The predictive ability of the FRGPI was validated in the GEO cohort. Finally, we verified the expression of the hub genes and the activity of the ferroptosis inducer FIN56 in GC cell lines and tissues. RESULTS: Four hub genes were identified (NOX4, MTCH1, GABARAPL2, and SLC2A3) and shown to accurately predict GC and H. pylori-associated GC. The FRGPI based on the hub genes could independently predict GC patient survival; GC patients in the high-risk group had considerably worse overall survival than did those in the low-risk group. The FRGPI was a significant predictor of GC prognosis and was strongly correlated with disease progression. Moreover, the gene expression levels of common immune checkpoint proteins dramatically increased in the high-risk subgroup of the FRGPI cohort. The hub genes were also confirmed to be highly overexpressed in GC cell lines and tissues and were found to be primarily localized at the cell membrane. The ferroptosis inducer FIN56 inhibited GC cell proliferation in a dose-dependent manner. CONCLUSION: In this study, we developed a predictive model based on four FRGs that can accurately predict the prognosis of GC patients and the efficacy of immunotherapy in this population.

2.
Front Oncol ; 14: 1357612, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628664

RESUMO

Paragangliomas (PGLs) are rare neuroendocrine tumors which overproduce catecholamines (CAs). They are extra-adrenal, catecholamine-secreting tumors occurring outside the adrenal glands. Gastric PGLs originating from extra-adrenal paraganglia are exceptionally rare, and their presentation in geriatric patients further adds to the complexity of diagnosis and management. A 72-year-old male patient presented with enduring left upper abdominal pain and anemia persisting for over a year, and hypertension for six months. Physical examination revealed epigastric discomfort and pallor. Computed tomography scans revealed enlarged lymph nodes in the lesser curvature of the stomach and thickening of the gastric antrum wall with concavity. The patient underwent three cycles of neoadjuvant therapy before radical gastrectomy for gastric cancer. These imaging findings were confirmed during surgery and intraoperative blood pressure was in fluctuation. After the successful resection of the tumor, postoperative pathology confirmed paraganglioma. During postoperative examination, it was observed that the patient's CAs and their metabolites had returned to within the normal range. Combined with the existing ten literatures, we retrospective report the clinical and pathological characteristics and treatment strategies of the rare gastric paraganglioma.

3.
Microbiol Spectr ; 12(5): e0183923, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564670

RESUMO

Solid organ transplantation is a crucial treatment for patients who have reached the end stage of heart, lung, kidney, or liver failure. However, the likelihood of developing cancer post-transplantation increases. Additionally, primary malignant tumors remain a major obstacle to the long-term survival of transplanted organs. Therefore, it is essential to investigate effective therapies that can boost the immune system's ability to combat cancer and prevent allograft rejection. We established a mouse orthotopic liver tumor model and conducted allogeneic heterotopic heart transplantation. Various treatments were administered, and survival curves were generated using the Kaplan-Meier method. We also collected graft samples and measured inflammatory cytokine levels in the serum using an inflammatory array. The specificity of the histochemical techniques was tested by staining sections. We administered a combination therapy of phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) dual inhibitor BEZ235 and Lactobacillus rhamnosus HN001 to primary liver cancer model mice with cardiac allografts. Consistent with our prior findings, L. rhamnosus HN001 alleviated the intestinal flora imbalance caused by BEZ235. Our previous research confirmed that the combination of BEZ235 and L. rhamnosus HN001 significantly prolonged cardiac transplant survival. IMPORTANCE: We observed that the combination of phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) dual inhibitor BEZ235 and Lactobacillus rhamnosus HN001 notably prolonged cardiac transplant survival while also inhibiting the progression of primary liver cancer. The combination therapy was efficacious in treating antitumor immunity and allograft rejection, as demonstrated by the efficacy results. We also found that this phenomenon was accompanied by the regulation of inflammatory IL-6 expression. Our study presents a novel and effective therapeutic approach to address antitumor immunity and prevent allograft rejection.


Assuntos
Transplante de Coração , Lacticaseibacillus rhamnosus , Serina-Treonina Quinases TOR , Animais , Masculino , Camundongos , Modelos Animais de Doenças , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/efeitos dos fármacos , Neoplasias Hepáticas , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
4.
Int Immunopharmacol ; 132: 112052, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593505

RESUMO

OBJECTIVE: We assessed NOX4 expression in gastric cancer (GC), its prognostic significance, and underlying mechanisms, focusing on promoting ferroptosis through increased ROS production. METHODS: We evaluated NOX4 expression in GC tissues via immunohistochemistry and analyzed correlations with clinicopathological characteristics using TCGA and clinical data. Impacts of manipulating NOX4 levels on GC cell invasiveness, proliferation, and sensitivity to ferroptosis inducers were investigated. RESULTS: Significantly higher NOX4 expression in GC tissues versus normal adjacent tissues correlated with decreased overall survival and increased tumor aggressiveness. NOX4 was an independent predictor of poor prognosis. Functionally, NOX4 manipulation influenced ROS levels, with overexpression enhancing production. Inhibition of NOX4 or application of antioxidants reduced cancer cell invasion and proliferation. Importantly, NOX4-overexpressing cells showed increased sensitivity to ferroptosis inducers, indicating synergistic effects between NOX4 and ferroptosis in suppressing GC progression. CONCLUSION: Our findings highlight NOX4's potential as a therapeutic target in GC, where modulation can enhance efficacy of ferroptosis-inducing treatments, offering a promising strategy for combating this malignancy.


Assuntos
Proliferação de Células , Ferroptose , NADPH Oxidase 4 , Invasividade Neoplásica , Espécies Reativas de Oxigênio , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ferroptose/efeitos dos fármacos , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Feminino , Masculino , Pessoa de Meia-Idade , Prognóstico , Regulação Neoplásica da Expressão Gênica
5.
Int J Biol Macromol ; 264(Pt 2): 130702, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471607

RESUMO

Pretreatment is a key process restricting the development of biorefinery. This work developed a pretreatment process based on an ethanolamine/acetamide alkaline deep eutectic solvent (ADES). Under microwave assistance, pure ADES pretreatment at 100 °C for 10 min achieved 95.9 % delignification and 95.2 % hemicellulose removal of bamboo shoot shells (BSS). Further, when 75 % water was added to pure DES to prepare hydrated DES (75 %-HADES), impressive delignification (93.2 %), hemicellulose removal (92.2 %) and cellulose recovery (94.8 %) were still achieved. The cellulose digestibility of the 75 %-HADES pretreated solid residue was significantly increased from 12.2 % (the control) to 91.2 %. Meanwhile, the structural features of hemicellulose and lignin macromolecules fractionated by 75 %-HADES pretreatment were well preserved, offering opportunities for downstream utilization. Overall, this work proposes an effective pretreatment strategy with the potential to enable the utilization of all major components of bamboo shoot shells.


Assuntos
Celulose , Solventes Eutéticos Profundos , Solventes/química , Biomassa , Hidrólise , Lignina/química
6.
Carbohydr Polym ; 328: 121750, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220333

RESUMO

Metal-organic frameworks (MOFs) are characterised by high porosity levels and controllable structures, making them ideal adsorbents for wastewater. However, obtaining substrate materials with mechanical stability, excellent pore accessibility, and good processability for compositing MOF crystal powders to adsorb multiple pollutants in complex aqueous environments is challenging. In this study, porous MOFs@ modified cellulose sponge (MCS) composites were fabricated using MCS as a scaffold to provide anchoring sites for the coordination of Zr4+ ions and further in situ synthesis of MOFs, namely UiO-66@MCS and UiO-66-NH2@MCS, which effectively removed heavy metal ions and organic dyes. MOFs@MCS composites exhibit excellent water and dimensional stability, maintaining the pore structure by ambient drying during reuse. Compared with UiO-66@MCS composite, UiO-66-NH2@MCS composite exhibited a higher adsorption capacity of 224.5 mg·g-1 for Hg2+ and 400.9 mg·g-1 for methylene blue (MB). The adsorption of Hg2+ onto the MOFs@MCS composites followed the Langmuir and pseudo-second-order models, whereas the Freundlich and pseudo-second-order models were more suitable for MB adsorption. Moreover, the MOFs@MCS composites exhibited excellent reusability and were selective for the removal of Hg2+. Overall, this approach effectively combines Zr-based MOFs with mechanically and dimensionally stable porous cellulose sponges, rendering the approach suitable for purifying complex wastewater.

7.
Surg Case Rep ; 10(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165550

RESUMO

BACKGROUND: Uncontrolled ulcer bleeding of duodenal ulcer (DU) after endoscopic therapy often needs surgery. At present, cutting the bottom of the ulcer with ligation and performing its excision-lesion are the common ways to achieve immediate efficacy in stopping bleeding. For the problem of its great trauma, we seek an easy and useful technical method to reach the same therapeutic effect to stop acute bleeding. METHODS: We determined the distribution of the lesion and its innervated blood vessels under the guidance of the endoscopy and then performed suture and hemostasis on the external surface of the stomach and duodenum. RESULTS: An immediate efficacy in stopping bleeding was shown and the hemoglobin (Hb) level returned to normal after operation with no recurrence of bleeding. CONCLUSION: We created a successful and novel strategy for laparotomy-endoscopic assisted suture for DU emergency hemostasis without duodenectomy.

8.
Heliyon ; 9(11): e22093, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045194

RESUMO

Bromodomain and extraterminal domain protein inhibitors have shown therapeutic promise in hepatocellular carcinoma. However, resistance to bromodomain and extraterminal domain protein inhibitors has emerged in preclinical trials, presenting an immense clinical challenge, and the mechanisms are unclear. In this study, we found that overexpression of SIRT1 induced by JQ-1, a bromodomain and extraterminal domain protein inhibitor, may confer resistance to JQ-1 in hepatocellular carcinoma. SIRT1 protein expression was higher in hepatocellular carcinoma tissues than in normal tissues, and this phenotype was correlated with a poor prognosis. Cotreatment with JQ-1 and the SIRT1 inhibitor EX527 synergistically suppressed proliferation and blocked cell cycle progression in hepatocellular carcinoma cells. Combined administration of JQ-1 and EX527 successfully reduced the tumor burden in vivo. In addition, JQ-1 mediated AMPK/p-AMPK axis activation to upregulate SIRT1 protein expression and enhanced autophagy to inhibit cell apoptosis. Activation of AMPK could alleviate the antitumor effect of the combination of JQ-1 and EX527 on hepatocellular carcinoma cells. Furthermore, inhibition of SIRT1 further enhanced the antitumor effect of JQ-1 by blocking protective autophagy in hepatocellular carcinoma. Our study proposes a novel and efficacious therapeutic strategy of a BET inhibitor combined with a SIRT1 inhibitor for hepatocellular carcinoma.

9.
Medicine (Baltimore) ; 102(51): e36734, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134072

RESUMO

RATIONALE: Paraesophageal hernias, accounting for a mere 5% to 10% of all hiatal hernias, occasionally present an exceedingly uncommon yet gravely consequential complication characterized by the inversion of the stomach. Delving into the clinical manifestations and optimal therapeutic approaches for patients afflicted by this condition merits substantial exploration. PATIENT CONCERNS: A 60-year-old man was referred to our hospital with acute onset of severe epigastric pain, abdominal distension, and vomiting. A chest radiograph unveiled an elevated left diaphragmatic dome accompanied by a pronounced rightward shift of the mediastinum. Subsequent abdominal computed tomography imaging delineated the migration of the stomach, spleen, and colon into the left hemithorax, facilitated by a significant diaphragmatic defect. DIAGNOSES: The diagnosis of a giant paraesophageal hernia with complete gastric inversion was established through a comprehensive evaluation of the patient's clinical manifestations and imaging findings. INTERVENTIONS: Surgical intervention was performed on the patient. During the procedure, a left diaphragmatic defect measuring approximately 10 × 8 cm was identified and meticulously repositioned, followed by the repair of the diaphragmatic hernia. The herniated contents comprised the pancreas, stomach, spleen, a segment of the colon, and a portion of the greater omentum. OUTCOMES: The patient experienced a smooth postoperative recuperation and was discharged 12 days following the surgical procedure. Subsequently, during a 7-month follow-up period, the patient continued to exhibit favorable progress and recovery. LESSONS: Paraesophageal hernias are rare, and the presence of an inverted stomach in a giant paraesophageal hernia is exceptionally uncommon. Clinical presentation lacks distinct features and can lead to misdiagnosis. This case emphasizes the importance of timely surgical intervention guided by imaging, offering valuable clinical insights.


Assuntos
Hérnia Hiatal , Hérnias Diafragmáticas Congênitas , Masculino , Humanos , Pessoa de Meia-Idade , Hérnia Hiatal/complicações , Hérnia Hiatal/cirurgia , Estômago/cirurgia , Hérnias Diafragmáticas Congênitas/complicações , Diafragma , Dor Abdominal
10.
Infect Drug Resist ; 16: 4213-4225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404253

RESUMO

Introduction: Sepsis is the most severe infectious disease with the highest mortality rate, particularly among neonates admitted to the neonatal intensive care unit (NICU). This study retrospectively analyzed the epidemiology, antibiotic resistance profiles, and prevalence of multidrug-resistant (MDR) bacteria isolated from blood or cerebrospinal fluid (CSF) cultures in order to evaluate the appropriateness of initial empirical therapy for neonatal sepsis. Methods: A retrospective study was conducted in the NICU from January 1, 2015, to December 31, 2022. Microbiological data from patients admitted to the NICU were anonymously extracted from the Laboratory of Microbiology database. Neonatal sepsis was classified into two types: early-onset sepsis (EOS), which occurs within the first 72 hours of life, and late-onset sepsis (LOS) for those begins later. Results: A total of 679 bacterial strains, 543 from blood and 136 from CSF, were detected in 631 neonates. Among these, 378 isolates (55.67%) were Gram-positive bacteria, and 301 isolates (44.33%) were Gram-negative bacteria. The most frequently isolated pathogens were Coagulase-negative staphylococci (CoNS) (36.52%), followed by Klebsiella pneumoniae (20.47%) and Escherichia coli (13.84%). In EOS, 121 strains were found, CoNS represented the majority (33.88%), followed by Klebsiella pneumoniae (23.97%) and Escherichia coli (8.26%). Early-onset septicemia exhibited 67 (55.37%) MDR bacteria. In LOS, 558 strains were isolated, CoNS represented the majority of pathogens (37.10%), followed by Klebsiella pneumoniae (19.71%) and Escherichia coli (15.05%). Late-onset septicemia showed 332 (59.50%) MDR bacteria. High rates of MDR were found in CoNS (76.21%), carbapenem-resistant Klebsiella pneumoniae (66.91%), and MRSA (33.33%). Conclusion: The study revealed an alarming prevalence of MDR strains isolated from neonatal sepsis, emphasizing the necessity of finding effective prevention and treatment measures. Colistin can be used for MDR Gram-negative bacteria, while vancomycin and teicoplanin can be considered treatment therapies for staphylococcal infections.

11.
Sci Adv ; 9(22): eadg4993, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37267363

RESUMO

Autophagy and glycolysis are highly conserved biological processes involved in both physiological and pathological cellular programs, but the interplay between these processes is poorly understood. Here, we show that the glycolytic enzyme lactate dehydrogenase A (LDHA) is activated upon UNC-51-like kinase 1 (ULK1) activation under nutrient deprivation. Specifically, ULK1 directly interacts with LDHA, phosphorylates serine-196 when nutrients are scarce and promotes lactate production. Lactate connects autophagy and glycolysis through Vps34 lactylation (at lysine-356 and lysine-781), which is mediated by the acyltransferase KAT5/TIP60. Vps34 lactylation enhances the association of Vps34 with Beclin1, Atg14L, and UVRAG, and then increases Vps34 lipid kinase activity. Vps34 lactylation promotes autophagic flux and endolysosomal trafficking. Vps34 lactylation in skeletal muscle during intense exercise maintains muscle cell homeostasis and correlates with cancer progress by inducing cell autophagy. Together, our findings describe autophagy regulation mechanism and then integrate cell autophagy and glycolysis.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases , Lisina , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Lipídeos
12.
J Thorac Cardiovasc Surg ; 166(5): e406-e427, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37061907

RESUMO

OBJECTIVE: During cardiac transplantation, cellular injury and DNA damage can result in the accumulation of cytosolic double-stranded DNA (dsDNA), which can activate the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) signaling pathway and thus induce multiple proinflammatory responses. However, the role of the cGAS-STING pathway in cardiac transplantation remains unclear. This study explored the role of cardiomyocytic cGAS in mouse heart transplantation during the ischemia/reperfusion and rejection processes. METHODS AND RESULTS: Cytosolic dsDNA accumulation and cGAS-STING signaling pathway component upregulation were observed in the grafts posttransplantation. The use of cGAS-deficient donor tissues led to significantly prolonged graft survival. The underlying mechanisms involved decreased expression and phosphorylation of downstream proteins, including TANK binding kinase 1 and nuclear factor κB. In parallel, notably diminished expression levels of various proinflammatory cytokines were observed. Accordingly, substantially decreased proportions of macrophages (CD11b+F4/80+) and CD8+ T cells were observed in the spleen. The activation of CD8+ T cells (CD8+CD69+) within the graft and the proportion of effector memory (CD44highCD62Llow) lymphocytes in the spleen were notably decreased. Treatment with the cGAS inhibitor Ru.521 led to significantly prolonged graft survival. CONCLUSIONS: Cardiomyocytic cGAS plays a critical role by sensing cytosolic dsDNA during cardiac transplantation and could serve as a potential therapeutic target to prevent graft rejection.

13.
PLoS One ; 18(3): e0282244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36867605

RESUMO

OBJECTIVE: Breast cancer is the most common and high-incidence cancer in women. It is mainly treated by surgery combined with chemoradiation. The main challenge in treating breast cancer patients is developing resistance to chemotherapeutics, so it is urgent to find potential strategies that can improve the chemotherapy effect of patients. In this study, we aimed to explore the role of GSDME methylation in the sensitivity of chemotherapy for breast cancer. METHODS: Here, we identified breast cancer MCF-7 / Taxol cells models using quantitative real-time PCR (qRT-PCR), Western blotting (WB), and cell counting kit-8 (CCK-8) analyses. Epigenetic changes in it were detected by Methylated DNA immunoprecipitation-sequencing and methylation-specific PCR. The expression level of GSDME in breast cancer cells was observed by qPCR and WB analyses. CCK-8 and colony formation assay were used to detect cell proliferation. Finally, pyroptosis was detected by LDH assay, flow cytometry, and WB analyses. RESULTS: Our results indicate that ABCB1 mRNA and p-GP expression are significantly increased in breast cancer MCF-7 / Taxol cells. GSDME enhancer methylation was found in drug-resistant cells and was associated with the down-regulation of GSDME expression. After treatment with decitabine (5-Aza-2'-deoxycytidine), the demethylation of GSDME induced the occurrence of pyroptosis and thereby inhibited the proliferation of MCF-7 / Taxol cells. We found that the upregulation of GSDME enhances the chemosensitivity of MCF-7 / Taxol cells to paclitaxel by inducing pyroptosis. CONCLUSION: Taken together, we identified decitabine increases GSDME expression through DNA demethylation and induces pyroptosis, thus increasing the chemosensitivity of MCF-7 / Taxol cells to Taxol. Use of decitabine / GSDME / pyroptosis-based treatment strategies may be a new way to overcome the resistance of breast cancer to paclitaxel chemotherapy.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Paclitaxel , Desmetilação do DNA , Decitabina , Células MCF-7
14.
15.
Crit Rev Anal Chem ; : 1-13, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598423

RESUMO

Helicobacter pylori (H. pylori) is a bacterium that can colonize human gastric epithelial cells and cause H. pylori infection, closely related to many gastric diseases. Compared with conventional H. pylori detection methods, emerging diagnostic approaches (such as biosensors) have become potentially more effective alternatives due to their high sensitivity, good selectivity and noninvasiveness. This review begins with a brief overview of H. pylori infection, the processes that lead to diseases, and current diagnostic methods. Subsequently, advanced biosensors in different target-based for diagnosing H. pylori infection are focused, including the detection of H. pylori-related nucleic acid, H. pylori-related protein (such as the cytotoxin, urease), and intact H. pylori. In addition, prospects for the development of H. pylori detection methods are also discussed in the end.

16.
Immunology ; 169(2): 157-166, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36517459

RESUMO

Immunotherapy with immune checkpoint inhibitors (ICIs), including antibodies against programmed cell death protein-1 (PD-1) and its receptor programmed cell death ligand-1 (PD-L1), represents a promising systematic treatment for advanced human malignancies. Transplantation remains the ultimate therapy for end-stage organ diseases. However, the efficacy of ICI treatment in solid organ transplant (SOT) recipients remains controversial. We established a transgenic primary liver cancer mouse model and performed allogeneic heterotopic heart transplantation. Different treatments were performed and survival curves were calculated. Graft samples were collected, and immune cells and the cell surface expression of PD-L1 were analysed by flow cytometry. Inflammatory cytokine levels in the serum were measured by an inflammatory array. The specificity of the histochemical techniques was tested by staining sections. A combination immunotherapy comprising a BET protein inhibitor (JQ1) and an immune checkpoint inhibitor (anti-PD-L1 antibody) was administered to primary liver cancer model mice bearing cardiac allografts. Interestingly, the combination immunotherapy effectively suppressed the progression of primary liver cancer but did not accelerate allograft rejection. In accordance with our previous findings, BET protein inhibition enhances the expression of a putative membrane transporter (Rab8A), which upregulates the expression of PD-L1 on the plasma membrane in a transgenic primary liver cancer mouse model. This may be a crucial mechanism of tumour progression arrest. Our data showed that heart transplantation upregulated the expression of the proinflammatory factor IFN-γ and suggested that BET protein inhibition (with JQ1) decreased PD-L1 expression in heart tissues after cardiac transplantation. This phenomenon was accompanied by enhanced infiltration of inflammatory IFN-γ. Our study provides a novel and efficient therapeutic strategy for SOT recipients.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Antígeno B7-H1/metabolismo , Interferon gama , Imunoterapia/métodos , Aloenxertos/metabolismo
17.
J Heart Lung Transplant ; 42(2): 160-172, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36411190

RESUMO

BACKGROUND: Acute cellular rejection (ACR) is a major barrier to the long-term survival of cardiac allografts. Although immune cells are well known to play critical roles in ACR, the dynamic cellular landscape of allografts with ACR remains obscure. METHODS: Single-cell RNA sequencing (scRNA-seq) was carried out for mouse cardiac allografts with ACR. Bioinformatic analysis was performed, and subsequent transplant experiments were conducted to validate the findings. RESULTS: Despite an overall large depletion of cardiac fibroblasts (CFBs), highly expanded cytotoxic T lymphocytes and a CXCL10+Gbp2+ subcluster of CFBs were enriched within grafts at the late stage. CXCL10+Gbp2+ CFBs featured strong interferon responsiveness and high expression of chemokines and major histocompatibility complex molecules, implying their involvement in the recruitment and activation of immune cells. Cell‒cell communication analysis revealed that CXCL9/CXCL10-CXCR3 might contribute to regulating CXCL10+Gbp2+ CFB-induced chemotaxis and immune cell recruitment. In vivo transplant studies revealed the therapeutic potential of CXCR3 antagonism in transplant rejection. CONCLUSIONS: The findings of our study unveiled a novel CFB subcluster that might mediate acute cardiac rejection. Targeting CXCR3 could prolong allograft survival.


Assuntos
Rejeição de Enxerto , Transplante de Coração , Animais , Camundongos , Rejeição de Enxerto/patologia , Camundongos Endogâmicos C57BL , Transplante Homólogo
19.
Transplant Proc ; 54(7): 2008-2015, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35914969

RESUMO

BACKGROUND: BEZ235, a dual PI3K/mTOR inhibitor, has shown a critical impact in the treatment of cancers, with the ability to induce autophagy. However, the effects of BEZ235 in heart transplant have been rarely investigated. The aim of this study was to evaluate the potency of BEZ235 in cardiac allograft survival. METHODS: BEZ235 was administered during the perioperative period of syngeneic or allogeneic heart transplant to assess survival time. Next, the autophagy signaling pathway and the proinflammatory cytokines were analyzed. Furthermore, a cardiomyocytes-specific ATG5 gene-ablated mouse was used to confirm the results. RESULTS: BEZ235 treatment significantly prolonged the survival of the cardiac graft and reduced the infiltration of inflammatory cells. The expression levels of autophagy proteins were increased in the BEZ235 treatment group compared to the control group, but the therapeutic effect of BEZ235 was weakened in the cardiomyocytes-specific ATG5 gene-ablated mice. Moreover, BEZ235 significantly downregulated the expression of IL-1ß, IL-2, and TNF-α. CONCLUSIONS: It seems BEZ235 could induce autophagy and prolonged murine cardiac allograft survival in a mechanism that involved the autophagy pathway and changed multiple inflammatory factors. This study has proposed a theoretical foundation for the strong connection between mTOR-induced autophagy and heart transplant.


Assuntos
Transplante de Coração , Camundongos , Animais , Humanos , Transplante de Coração/efeitos adversos , Doadores de Tecidos , Serina-Treonina Quinases TOR , Autofagia , Inibidores de Fosfoinositídeo-3 Quinase , Fosfatidilinositol 3-Quinases/metabolismo , Aloenxertos/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
20.
Front Bioeng Biotechnol ; 10: 850198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814006

RESUMO

Background: The complexity of the spatial dynamic flexion axis (DFA) of the elbow joint makes the elbow prosthesis design and humeral component alignment challenging. This study aimed to 1) investigate the variations of the spatial DFA during elbow flexion and 2) investigate the relationship between the distal humeral trochlear geometry and the in vivo spatial variation of the DFA. Methods: Ten healthy subjects participated in this study. Each subject performed a full elbow extension to maximum flexion with hand supination under dual fluoroscopic imaging system (DFIS) surveillance. The 2D fluoroscopic images and the 3D bone models were registered to analyze the in vivo elbow kinematics and DFAs. The spatial DFA positions were defined as inclination with the medial and lateral epicondyle axes (MLA) in the transverse and coronal planes. The range of the DFA positions was also investigated during different flexion phases. The Spearman correlation method was used to analyze the relationship between the distal humeral trochlear's morphological parameters and the position of DFAs during different flexion phases. Results: The pathway of the DFAs showed an irregular pattern and presented individual features. The medial trochlear depth (MTD) (r = 0.68, p = 0.03) was positively correlated with the range of the DFA position (2.8° ± 1.9°) in the coronal plane from full extension to 30° of flexion. Lateral trochlear height (LTH) (r = -0.64, p = 0.04) was negatively correlated with the DFA position (-1.4° ± 3.3°) in the transverse plane from 30° to 60° of flexion. A significant correlation was found between LTH with the DFA position in the coronal (r = -0.77, p = 0.01) and transverse planes (r = -0.76, p = 0.01) from 60° to 90° of flexion. Conclusion: This study showed that the pathway of the dynamic flexion axis has an individual pattern. The medial and lateral trochlear sizes were the key parameters that might affect the elbow joint flexion function. When recovering complex distal humeral fractures or considering the implant design of total elbow arthroplasty, surgeons should pay more attention to the medial and lateral trochlea's geometry, which may help restore normal elbow kinematics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...