Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Bull ; 34(6): 1007-1016, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30128691

RESUMO

Exploring the transition from inter-ictal to ictal epileptiform discharges (IDs) and how GABAA receptor-mediated action affects the onset of IDs will enrich our understanding of epileptogenesis and epilepsy treatment. We used Mg2+-free artificial cerebrospinal fluid (ACSF) to induce epileptiform discharges in juvenile mouse hippocampal slices and used a micro-electrode array to record the discharges. After the slices were exposed to Mg2+-free ACSF for 10 min-20 min, synchronous recurrent seizure-like events were recorded across the slices, and each event evolved from inter-ictal epileptiform discharges (IIDs) to pre-ictal epileptiform discharges (PIDs), and then to IDs. During the transition from IIDs to PIDs, the duration of discharges increased and the inter-discharge interval decreased. After adding 3 µmol/L of the GABAA receptor agonist muscimol, PIDs and IDs disappeared, and IIDs remained. Further, the application of 10 µmol/L muscimol abolished all the epileptiform discharges. When the GABAA receptor antagonist bicuculline was applied at 10 µmol/L, IIDs and PIDs disappeared, and IDs remained at decreased intervals. These results indicated that there are dynamic changes in the hippocampal network preceding the onset of IDs, and GABAA receptor activity suppresses the transition from IIDs to IDs in juvenile mouse hippocampus.


Assuntos
Epilepsia/patologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Receptores de GABA-A/metabolismo , Animais , Animais Recém-Nascidos , Bicuculina/farmacologia , Modelos Animais de Doenças , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/uso terapêutico , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Magnésio/metabolismo , Magnésio/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Muscimol/farmacologia , Rede Nervosa/efeitos dos fármacos
2.
Neural Plast ; 2014: 205912, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24729906

RESUMO

The hippocampus plays an important role in the genesis of mesial temporal lobe epilepsy, and the entorhinal cortex (EC) may affect the hippocampal network activity because of the heavy interconnection between them. However, the mechanism by which the EC affects the discharge patterns and the transmission mode of epileptiform discharges within the hippocampus needs further study. Here, multielectrode recording techniques were used to study the spatiotemporal characteristics of epileptiform discharges in adult mouse hippocampal slices and combined EC-hippocampal slices and determine whether and how the EC affects the hippocampal neuron discharge patterns. The results showed that low-Mg²âº artificial cerebrospinal fluid induced interictal discharges in hippocampal slices, whereas, in combined EC-hippocampal slices the discharge pattern was alternated between interictal and ictal discharges, and ictal discharges initiated in the EC and propagated to the hippocampus. The pharmacological effect of the antiepileptic drug valproate (VPA) was tested. VPA reversibly suppressed the frequency of interictal discharges but did not change the initiation site and propagation speed, and it completely blocked ictal discharges. Our results suggested that EC was necessary for the hippocampal ictal discharges, and ictal discharges were more sensitive than interictal discharges in response to VPA.


Assuntos
Córtex Entorrinal/fisiologia , Epilepsia/fisiopatologia , Hipocampo/fisiopatologia , Deficiência de Magnésio/fisiopatologia , Animais , Anticonvulsivantes/farmacologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/fisiologia , Interpretação Estatística de Dados , Eletroencefalografia/efeitos dos fármacos , Córtex Entorrinal/efeitos dos fármacos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácido Valproico/farmacologia
3.
PLoS One ; 9(3): e92961, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24658094

RESUMO

Understanding the connectivity of the brain neural network and its evolution in epileptiform discharges is meaningful in the epilepsy researches and treatments. In the present study, epileptiform discharges were induced in rat hippocampal slices perfused with Mg2+-free artificial cerebrospinal fluid. The effective connectivity of the hippocampal neural network was studied by comparing the normal and epileptiform discharges recorded by a microelectrode array. The neural network connectivity was constructed by using partial directed coherence and analyzed by graph theory. The transition of the hippocampal network topology from control to epileptiform discharges was demonstrated. Firstly, differences existed in both the averaged in- and out-degree between nodes in the pyramidal cell layer and the granule cell layer, which indicated an information flow from the pyramidal cell layer to the granule cell layer during epileptiform discharges, whereas no consistent information flow was observed in control. Secondly, the neural network showed different small-worldness in the early, middle and late stages of the epileptiform discharges, whereas the control network did not show the small-world property. Thirdly, the network connectivity began to change earlier than the appearance of epileptiform discharges and lasted several seconds after the epileptiform discharges disappeared. These results revealed the important network bases underlying the transition from normal to epileptiform discharges in hippocampal slices. Additionally, this work indicated that the network analysis might provide a useful tool to evaluate the neural network and help to improve the prediction of seizures.


Assuntos
Epilepsia/metabolismo , Epilepsia/fisiopatologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Magnésio/metabolismo , Modelos Neurológicos , Vias Neurais , Algoritmos , Animais , Masculino , Potenciais da Membrana , Ratos
4.
Neurosci Bull ; 29(1): 28-36, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23361520

RESUMO

The epileptic seizure is a dynamic process involving a rapid transition from normal activity to a state of hypersynchronous neuronal discharges. Here we investigated the network properties of epileptiform discharges in hippocampal slices in the presence of high K(+) concentration (8.5 mmol/L) in the bath, and the effects of the anti-epileptic drug valproate (VPA) on epileptiform discharges, using a microelectrode array. We demonstrated that epileptiform discharges were predominantly initiated from the stratum pyramidale layer of CA3a-b and propagated bi-directionally to CA1 and CA3c. Disconnection of CA3 from CA1 abolished the discharges in CA1 without disrupting the initiation of discharges in CA3. Further pharmacological experiments showed that VPA at a clinically relevant concentration (100 µmol/L) suppressed the propagation speed but not the rate or duration of high-K(+)-induced discharges. Our findings suggest that pacemakers exist in the CA3a-b region for the generation of epileptiform discharges in the hippocampus. VPA reduces the conduction of such discharges in the network by reducing the propagation speed.


Assuntos
Anticonvulsivantes/farmacologia , Epilepsia/prevenção & controle , Hipocampo/efeitos dos fármacos , Potássio , Ácido Valproico/farmacologia , Animais , Mapeamento Encefálico , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/fisiopatologia , Modelos Animais de Doenças , Epilepsia/induzido quimicamente , Epilepsia/fisiopatologia , Hipocampo/fisiopatologia , Técnicas In Vitro , Masculino , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiopatologia , Ratos , Ratos Sprague-Dawley
5.
Neuroreport ; 21(12): 797-801, 2010 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-20628323

RESUMO

In this study, the spike discharges of one subtype of bullfrog retinal ganglion cells (dimming detectors) in response to repetitive full field light-OFF stimuli were recorded using multi-electrode arrays. Two different types of concerted activity (precise synchronization and correlated activity) could be distinguished. The nearby cells with overlapped receptive field areas often fired in synchrony, whereas the correlated activity was mainly observed from remote cell pairs with separated receptive fields. After the bicuculline application, the strength of the synchronized activity was increased whereas that of the correlated activity was decreased. These results suggest that the activation of GABAA-receptor-mediated inhibitory pathways differentially modulates the concerted firing of the ganglion cells.


Assuntos
Potenciais de Ação/fisiologia , Comunicação Celular/fisiologia , Inibição Neural/fisiologia , Receptores de GABA-A/metabolismo , Células Ganglionares da Retina/fisiologia , Ácido gama-Aminobutírico/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Bicuculina/farmacologia , Comunicação Celular/efeitos dos fármacos , Antagonistas GABAérgicos/farmacologia , Inibição Neural/efeitos dos fármacos , Vias Neurais/citologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Técnicas de Cultura de Órgãos , Estimulação Luminosa/métodos , Rana catesbeiana , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/fisiologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/efeitos dos fármacos , Visão Ocular/fisiologia , Campos Visuais/fisiologia
6.
Sheng Li Xue Bao ; 62(2): 163-70, 2010 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-20401452

RESUMO

To investigate the spatiotemporal properties of epileptiform activity in vitro, 400 microm-thick transverse hippocampal slices were prepared from juvenile rat and planar multi-electrode array (MEA) containing 60 electrodes was used to record the electrical activity induced by bath application of high potassium artificial cerebrospinal fluid (ACSF) on slices. Following successful induction of epileptiform bursts, phenobarbital sodium was applied to test for its inhibitory effects on bursting activity in different regions of slice. Region-specific characteristics of epileptiform activity and anticonvulsant actions of phenobarbital sodium in the hippocampal network were determined by comparing the population activity obtained from MEA. The results showed that: (1) 15 min after high-K+ ACSF application, rhythmic and synchronous epileptiform bursts could be detected from all CA sub-regions. Quantitative analysis indicates that the firing patterns of different CA sub-regions were not statistically different (P>0.05). However, no bursting activity was recorded from granular cells in dentate gyrus, only sparse spikes were observed, with frequency significantly lower than that in CA regions (P<0.05). (2) The high-K+-induced bursting activity could last for more than 40 min with stable bursting activities. (3) Bath application of 60 micromol/L phenobarbital sodium inhibited the bursting activities on hippocampal slice. Bursting activities in CA3c and CA1 were firstly suppressed. 10 min after the phenobarbital sodium application, strong bursting activities persisted only in some of pyramidal cells in CA3a and CA3b. These results show that MEA could be applied for studying the spatial and temporal properties of epileptiform activity in vitro, as well as the region-specific effects of anti-epileptic drugs.


Assuntos
Potenciais de Ação/fisiologia , Epilepsia/fisiopatologia , Hipocampo/fisiopatologia , Animais , Eletrodos , Eletroencefalografia , Fenômenos Eletrofisiológicos/fisiologia , Técnicas In Vitro , Masculino , Ratos , Ratos Sprague-Dawley , Processamento de Sinais Assistido por Computador
7.
Cogn Neurodyn ; 4(3): 179-88, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21886670

RESUMO

Neural information is processed based on integrated activities of relevant neurons. Concerted population activity is one of the important ways for retinal ganglion cells to efficiently organize and process visual information. In the present study, the spike activities of bullfrog retinal ganglion cells in response to three different visual patterns (checker-board, vertical gratings and horizontal gratings) were recorded using multi-electrode arrays. A measurement of subsequence distribution discrepancy (MSDD) was applied to identify the spatio-temporal patterns of retinal ganglion cells' activities in response to different stimulation patterns. The results show that the population activity patterns were different in response to different stimulation patterns, such difference in activity pattern was consistently detectable even when visual adaptation occurred during repeated experimental trials. Therefore, the stimulus pattern can be reliably discriminated according to the spatio-temporal pattern of the neuronal activities calculated using the MSDD algorithm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...