Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 315(1): E38-E51, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351486

RESUMO

Insulin, the most potent anabolic hormone, is critical for somatic growth and metabolism in vertebrates. Type 2 diabetes, which is the primary cause of hyperglycemia, results from an inability of insulin to signal glycolysis and gluconeogenesis. Our previous study showed that double knockout of insulin receptor a ( insra) and b ( insrb) caused ß-cell hyperplasia and lethality from 5 to 16 days postfertilization (dpf) (Yang BY, Zhai G, Gong YL, Su JZ, Han D, Yin Z, Xie SQ. Sci Bull (Beijing) 62: 486-492, 2017). In this study, we characterized the physiological roles of Insra and Insrb, in somatic growth and fueling metabolism, respectively. A high-carbohydrate diet was provided for insulin receptor knockout zebrafish from 60 to 120 dpf to investigate phenotype inducement and amplification. We observed hyperglycemia in both insra-/- fish and insrb-/- fish. Impaired growth hormone signaling, increased visceral adiposity, and fatty liver were detected in insrb-/- fish, which are phenotypes similar to the lipodystrophy observed in mammals. More importantly, significantly diminished protein levels of P-PPARα, P-STAT5, and IGF-1 were also observed in insrb-/- fish. In insra-/- fish, we observed increased protein content and decreased lipid content of the whole body. Taken together, although Insra and Insrb show overlapping roles in mediating glucose metabolism through the insulin-signaling pathway, Insrb is more prone to promoting lipid catabolism and protein synthesis through activation of the growth hormone-signaling pathway, whereas Insra primarily acts to promote lipid synthesis via glucose utilization.


Assuntos
Fenômenos Fisiológicos da Nutrição/fisiologia , Receptor de Insulina/fisiologia , Peixe-Zebra/fisiologia , Animais , Ingestão de Alimentos/genética , Técnicas de Inativação de Genes , Glucose/metabolismo , Insulina/fisiologia , Metabolismo dos Lipídeos/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Consumo de Oxigênio/genética , Receptor de Insulina/genética , Transdução de Sinais/genética , Proteínas de Peixe-Zebra/genética
2.
Plant Physiol ; 172(3): 1679-1690, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27650448

RESUMO

Acyl Activating Enzyme3 (AAE3) was identified to be involved in the catabolism of oxalate, which is critical for seed development and defense against fungal pathogens. However, the role of AAE3 protein in abiotic stress responses is unknown. Here, we investigated the role of rice bean (Vigna umbellata) VuAAE3 in Al tolerance. Recombinant VuAAE3 protein has specific activity against oxalate, with Km = 121 ± 8.2 µm and Vmax of 7.7 ± 0.88 µmol min-1 mg-1 protein, indicating it functions as an oxalyl-CoA synthetase. VuAAE3-GFP localization suggested that this enzyme is a soluble protein with no specific subcellular localization. Quantitative reverse transcription-PCR and VuAAE3 promoter-GUS reporter analysis showed that the expression induction of VuAAE3 is mainly confined to rice bean root tips. Accumulation of oxalate was induced rapidly by Al stress in rice bean root tips, and exogenous application of oxalate resulted in the inhibition of root elongation and VuAAE3 expression induction, suggesting that oxalate accumulation is involved in Al-induced root growth inhibition. Furthermore, overexpression of VuAAE3 in tobacco (Nicotiana tabacum) resulted in the increase of Al tolerance, which was associated with the decrease of oxalate accumulation. In addition, NtMATE and NtALS3 expression showed no difference between transgenic lines and wild-type plants. Taken together, our results suggest that VuAAE3-dependent turnover of oxalate plays a critical role in Al tolerance mechanisms.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Alumínio/toxicidade , Coenzima A Ligases/metabolismo , Oxalatos/metabolismo , Proteínas de Plantas/metabolismo , Vigna/enzimologia , Sequência de Aminoácidos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Clonagem Molecular , Coenzima A Ligases/química , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Especificidade de Órgãos/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Análise de Sequência de Proteína , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Frações Subcelulares/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/fisiologia , Vigna/efeitos dos fármacos , Vigna/genética , Vigna/metabolismo
3.
Plant Physiol ; 171(1): 294-305, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27021188

RESUMO

Formate dehydrogenase (FDH) is involved in various higher plant abiotic stress responses. Here, we investigated the role of rice bean (Vigna umbellata) VuFDH in Al and low pH (H(+)) tolerance. Screening of various potential substrates for the VuFDH protein demonstrated that it functions as a formate dehydrogenase. Quantitative reverse transcription-PCR and histochemical analysis showed that the expression of VuFDH is induced in rice bean root tips by Al or H(+) stresses. Fluorescence microscopic observation of VuFDH-GFP in transgenic Arabidopsis plants indicated that VuFDH is localized in the mitochondria. Accumulation of formate is induced by Al and H(+) stress in rice bean root tips, and exogenous application of formate increases internal formate content that results in the inhibition of root elongation and induction of VuFDH expression, suggesting that formate accumulation is involved in both H(+)- and Al-induced root growth inhibition. Over-expression of VuFDH in tobacco (Nicotiana tabacum) results in decreased sensitivity to Al and H(+) stress due to less production of formate in the transgenic tobacco lines under Al and H(+) stresses. Moreover, NtMATE and NtALS3 expression showed no changes versus wild type in these over-expression lines, suggesting that herein known Al-resistant mechanisms are not involved. Thus, the increased Al tolerance of VuFDH over-expression lines is likely attributable to their decreased Al-induced formate production. Taken together, our findings advance understanding of higher plant Al toxicity mechanisms, and suggest a possible new route toward the improvement of plant performance in acidic soils, where Al toxicity and H(+) stress coexist.


Assuntos
Alumínio/toxicidade , Formiato Desidrogenases/metabolismo , Proteínas de Plantas/metabolismo , Vigna/efeitos dos fármacos , Vigna/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Clonagem Molecular , Formiato Desidrogenases/genética , Formiatos/metabolismo , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Vigna/metabolismo
4.
New Phytol ; 208(2): 456-68, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25970766

RESUMO

The rice bean (Vigna umbellata) root apex specifically secretes citrate through expression activation of Vigna umbellata Multidrug and Toxic Compound Extrusion 1 (VuMATE1) under aluminum (Al(3+) ) stress. However, the underlying mechanisms regulating VuMATE1 expression remain unknown. We isolated and characterized a gene encoding Sensitive to Proton Rhizotoxicity1 (STOP1)-like protein, VuSTOP1, from rice bean. The role of VuSTOP1 in regulating VuMATE1 expression was investigated using the yeast one-hybrid assay. We characterized the function of VuSTOP1 in Al(3)  (+)  - and H(+) -tolerance using in planta complementation assays. We demonstrated that VuSTOP1 has transactivation potential. We found that VuSTOP1 expression is inducible by Al(3+) and H(+) stress. However, although VuSTOP1 binds to the promoter of VuMATE1, the inconsistent tissue localization patterns of VuSTOP1 and VuMATE1 preclude VuSTOP1 as the major factor regulating VuMATE1 expression. In addition, when a protein translation inhibitor increased expression of VuSTOP1, VuMATE1 expression was inhibited. In planta complementation assay demonstrated that VuSTOP1 could fully restore expression of genes involved in H(+) tolerance, but could only partially restore expression of AtMATE. We conclude that VuSTOP1 plays a major role in H(+) tolerance, but only a minor role in Al(3+) tolerance. The differential transcriptional regulation of VuSTOP1 and VuMATE1 reveals a complex regulatory system controlling VuMATE1 expression.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Alumínio/toxicidade , Fabaceae/fisiologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Dedos de Zinco , Sequência de Aminoácidos , Arabidopsis/fisiologia , Sequência de Bases , Clonagem Molecular , Cicloeximida/farmacologia , Fabaceae/efeitos dos fármacos , Fabaceae/genética , Fabaceae/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Glucuronidase/metabolismo , Concentração de Íons de Hidrogênio , Modelos Biológicos , Mutação/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Prótons , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Frações Subcelulares/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ativação Transcricional , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...