Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37440375

RESUMO

In real scenarios, graph-based multiview clustering has clearly shown popularity owing to the high efficiency in fusing the information from multiple views. Practically, the multiview graphs offer both consistent and inconsistent cues as they usually come from heterogeneous sources. Previous methods illustrated the importance of leveraging the multiview consistency and inconsistency for accurate modeling. However, when fusing the graphs, the inconsistent parts are generally ignored and hence the valued view-specific attributes are lost. To solve this problem, we propose an accurate complementarity learning (ACL) model for graph-based multiview clustering. ACL clearly distinguishes the consistent, complementary, and noise and corruption terms from the initial multiview graphs. In contrast to existing models that overlooked the complementary information, we argue that the view-specific characteristics extracted from the complementary terms are beneficial for affinity learning. In addition, ACL exploits only the positive parts of the complementary information for preserving the evidence on the positive sample relationship, and ignores the negative cues to avoid the vanishing of effective affinity strengths. This way, the learned affinity matrix is able to properly balance the consistent and complementary information. To solve the ACL model, we introduce an efficient alternating optimization algorithm with a varying penalty parameter. Experiments on synthetic and real-world databases clearly demonstrated the superiority of ACL.

2.
IEEE Trans Cybern ; 52(1): 51-64, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32167922

RESUMO

Multimodal optimization problems have multiple satisfactory solutions to identify. Most of the existing works conduct the search based on the information of the current population, which can be inefficient. This article proposes a probabilistic niching evolutionary computation framework that guides the future search based on more sufficient historical information, in order to locate diverse and high-quality solutions. A binary space partition tree is built to structurally organize the space visiting information. Based on the tree, a probabilistic niching strategy is defined to reinforce exploration and exploitation by making full use of the structural historical information. The proposed framework is universal for incorporating various baseline niching algorithms. In this article, we integrate the proposed framework with two niching algorithms: 1) a distance-based differential evolution algorithm and 2) a topology-based particle swarm optimization algorithm. The two new algorithms are evaluated on 20 multimodal optimization test functions. The experimental results show that the proposed framework helps the algorithms obtain competitive performance. They outperform a number of state-of-the-art niching algorithms on most of the test functions.


Assuntos
Algoritmos
3.
IEEE Trans Neural Netw Learn Syst ; 32(3): 1325-1338, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32310792

RESUMO

To learn the self-representation matrices/tensor that encodes the intrinsic structure of the data, existing multiview self-representation models consider only the multiview features and, thus, impose equal membership preference across samples. However, this is inappropriate in real scenarios since the prior knowledge, e.g., explicit labels, semantic similarities, and weak-domain cues, can provide useful insights into the underlying relationship of samples. Based on this observation, this article proposes a prior knowledge regularized multiview self-representation (P-MVSR) model, in which the prior knowledge, multiview features, and high-order cross-view correlation are jointly considered to obtain an accurate self-representation tensor. The general concept of "prior knowledge" is defined as the complement of multiview features, and the core of P-MVSR is to take advantage of the membership preference, which is derived from the prior knowledge, to purify and refine the discovered membership of the data. Moreover, P-MVSR adopts the same optimization procedure to handle different prior knowledge and, thus, provides a unified framework for weakly supervised clustering and semisupervised classification. Extensive experiments on real-world databases demonstrate the effectiveness of the proposed P-MVSR model.

4.
IEEE Trans Cybern ; 51(8): 4134-4147, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31613788

RESUMO

In many practical applications, it is crucial to perform automatic data clustering without knowing the number of clusters in advance. The evolutionary computation paradigm is good at dealing with this task, but the existing algorithms encounter several deficiencies, such as the encoding redundancy and the cross-dimension learning error. In this article, we propose a novel elastic differential evolution algorithm to solve automatic data clustering. Unlike traditional methods, the proposed algorithm considers each clustering layout as a whole and adapts the cluster number and cluster centroids inherently through the variable-length encoding and the evolution operators. The encoding scheme contains no redundancy. To enable the individuals of different lengths to exchange information properly, we develop a subspace crossover and a two-phase mutation operator. The operators employ the basic method of differential evolution and, in addition, they consider the spatial information of cluster layouts to generate offspring solutions. Particularly, each dimension of the parameter vector interacts with its correlated dimensions, which not only adapts the cluster number but also avoids the cross-dimension learning error. The experimental results show that our algorithm outperforms the state-of-the-art algorithms that it is able to identify the correct number of clusters and obtain a good cluster validation value.

5.
IEEE Trans Cybern ; 51(11): 5433-5444, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32248138

RESUMO

Sensor activity scheduling is critical for prolonging the lifetime of wireless sensor networks (WSNs). However, most existing methods assume sensors to have one fixed sensing range. Prevalence of sensors with adjustable sensing ranges posts two new challenges to the topic: 1) expanded search space, due to the rise in the number of possible activation modes and 2) more complex energy allocation, as the sensors differ in the energy consumption rate when using different sensing ranges. These two challenges make it hard to directly solve the lifetime maximization problem of WSNs with range-adjustable sensors (LM-RASs). This article proposes a neighborhood-based estimation of distribution algorithm (NEDA) to address it in a recursive manner. In NEDA, each individual represents a coverage scheme in which the sensors are selectively activated to monitor all the targets. A linear programming (LP) model is built to assign activation time to the schemes in the population so that their sum, the network lifetime, can be maximized conditioned on the current population. Using the activation time derived from LP as individual fitness, the NEDA is driven to seek coverage schemes promising for prolonging the network lifetime. The network lifetime is thus optimized by repeating the steps of the coverage scheme evolution and LP model solving. To encourage the search for diverse coverage schemes, a neighborhood sampling strategy is introduced. Besides, a heuristic repair strategy is designed to fine-tune the existing schemes for further improving the search efficiency. Experimental results on WSNs of different scales show that NEDA outperforms state-of-the-art approaches. It is also expected that NEDA can serve as a potential framework for solving other flexible LP problems that share the same structure with LM-RAS.

6.
IEEE Trans Image Process ; 30: 108-120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33090953

RESUMO

As the cornerstone for joint dimension reduction and feature extraction, extensive linear projection algorithms were proposed to fit various requirements. When being applied to image data, however, existing methods suffer from representation deficiency since the multi-way structure of the data is (partially) neglected. To solve this problem, we propose a novel Low-Rank Preserving t-Linear Projection (LRP-tP) model that preserves the intrinsic structure of the image data using t-product-based operations. The proposed model advances in four aspects: 1) LRP-tP learns the t-linear projection directly from the tensorial dataset so as to exploit the correlation among the multi-way data structure simultaneously; 2) to cope with the widely spread data errors, e.g., noise and corruptions, the robustness of LRP-tP is enhanced via self-representation learning; 3) LRP-tP is endowed with good discriminative ability by integrating the empirical classification error into the learning procedure; 4) an adaptive graph considering the similarity and locality of the data is jointly learned to precisely portray the data affinity. We devise an efficient algorithm to solve the proposed LRP-tP model using the alternating direction method of multipliers. Extensive experiments on image feature extraction have demonstrated the superiority of LRP-tP compared to the state-of-the-arts.

7.
Artigo em Inglês | MEDLINE | ID: mdl-31670667

RESUMO

Linear discriminant analysis has been incorporated with various representations and measurements for dimension reduction and feature extraction. In this paper, we propose two-dimensional quaternion sparse discriminant analysis (2D-QSDA) that meets the requirements of representing RGB and RGB-D images. 2D-QSDA advances in three aspects: 1) including sparse regularization, 2D-QSDA relies only on the important variables, and thus shows good generalization ability to the out-of-sample data which are unseen during the training phase; 2) benefited from quaternion representation, 2D-QSDA well preserves the high order correlation among different image channels and provides a unified approach to extract features from RGB and RGB-D images; 3) the spatial structure of the input images is retained via the matrix-based processing. We tackle the constrained trace ratio problem of 2D-QSDA by solving a corresponding constrained trace difference problem, which is then transformed into a quaternion sparse regression (QSR) model. Afterward, we reformulate the QSR model to an equivalent complex form to avoid the processing of the complicated structure of quaternions. A nested iterative algorithm is designed to learn the solution of 2D-QSDA in the complex space and then we convert this solution back to the quaternion domain. To improve the separability of 2D-QSDA, we further propose 2D-QSDAw using the weighted pairwise between-class distances. Extensive experiments on RGB and RGB-D databases demonstrate the effectiveness of 2D-QSDA and 2D-QSDAw compared with peer competitors.

8.
IEEE Trans Cybern ; 49(1): 27-41, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29990116

RESUMO

This paper develops a decomposition-based coevolutionary algorithm for many-objective optimization, which evolves a number of subpopulations in parallel for approaching the set of Pareto optimal solutions. The many-objective problem is decomposed into a number of subproblems using a set of well-distributed weight vectors. Accordingly, each subpopulation of the algorithm is associated with a weight vector and is responsible for solving the corresponding subproblem. The exploration ability of the algorithm is improved by using a mating pool that collects elite individuals from the cooperative subpopulations for breeding the offspring. In the subsequent environmental selection, the top-ranked individuals in each subpopulation, which are appraised by aggregation functions, survive for the next iteration. Two new aggregation functions with distinct characteristics are designed in this paper to enhance the population diversity and accelerate the convergence speed. The proposed algorithm is compared with several state-of-the-art many-objective evolutionary algorithms on a large number of benchmark instances, as well as on a real-world design problem. Experimental results show that the proposed algorithm is very competitive.

9.
IEEE Trans Cybern ; 49(7): 2792-2805, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29994281

RESUMO

Parallel test assembly has long been an important yet challenging topic in educational assessment. Cognitive diagnosis models (CDMs) are a new class of assessment models and have drawn increasing attention for being able to measure examinees' ability in detail. However, few studies have been devoted to the parallel test assembly problem in CDMs (CDM-PTA). To fill the gap, this paper models CDM-PTA as a subset-based bi-objective combinatorial optimization problem. Given an item bank, it aims to find a required number of tests that achieve optimal but balanced diagnostic performance, while satisfying important practical requests in the aspects of test length, item type distribution, and overlapping proportion. A set-based multiobjective particle swarm optimizer based on decomposition (S-MOPSO/D) is proposed to solve the problem. To coordinate with the property of CDM-PTA, S-MOPSO/D utilizes an assignment-based representation scheme and a constructive learning strategy. Through this, promising solutions can be built efficiently based on useful assignment patterns learned from personal and collective search experience on neighboring scalar problems. A heuristic constraint handling strategy is also developed to further enhance the search efficiency. Experimental results in comparison with three representative approaches validate that the proposed algorithm is effective and efficient.


Assuntos
Algoritmos , Inteligência Artificial , Avaliação Educacional/métodos , Psicometria/métodos , Cognição/fisiologia , Modelos Educacionais
10.
IEEE Trans Cybern ; 49(8): 2912-2926, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29994556

RESUMO

Cloud workflow scheduling is significantly challenging due to not only the large scale of workflow but also the elasticity and heterogeneity of cloud resources. Moreover, the pricing model of clouds makes the execution time and execution cost two critical issues in the scheduling. This paper models the cloud workflow scheduling as a multiobjective optimization problem that optimizes both execution time and execution cost. A novel multiobjective ant colony system based on a co-evolutionary multiple populations for multiple objectives framework is proposed, which adopts two colonies to deal with these two objectives, respectively. Moreover, the proposed approach incorporates with the following three novel designs to efficiently deal with the multiobjective challenges: 1) a new pheromone update rule based on a set of nondominated solutions from a global archive to guide each colony to search its optimization objective sufficiently; 2) a complementary heuristic strategy to avoid a colony only focusing on its corresponding single optimization objective, cooperating with the pheromone update rule to balance the search of both objectives; and 3) an elite study strategy to improve the solution quality of the global archive to help further approach the global Pareto front. Experimental simulations are conducted on five types of real-world scientific workflows and consider the properties of Amazon EC2 cloud platform. The experimental results show that the proposed algorithm performs better than both some state-of-the-art multiobjective optimization approaches and the constrained optimization approaches.

11.
IEEE Trans Image Process ; 28(5): 2126-2139, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30452371

RESUMO

Recent studies have shown the effectiveness of using depth information in salient object detection. However, the most commonly seen images so far are still RGB images that do not contain the depth data. Meanwhile, the human brain can extract the geometric model of a scene from an RGB-only image and hence provides a 3D perception of the scene. Inspired by this observation, we propose a new concept named RGB-'D' saliency detection, which derives pseudo depth from the RGB images and then performs 3D saliency detection. The pseudo depth can be utilized as image features, prior knowledge, an additional image channel, or independent depth-induced models to boost the performance of traditional RGB saliency models. As an illustration, we develop a new salient object detection algorithm that uses the pseudo depth to derive a depth-driven background prior and a depth contrast feature. Extensive experiments on several standard databases validate the promising performance of the proposed algorithm. In addition, we also adapt two supervised RGB saliency models to our RGB-'D' saliency framework for performance enhancement. The results further demonstrate the generalization ability of the proposed RGB-'D' saliency framework.

12.
IEEE Trans Image Process ; 27(6): 2883-2896, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29570089

RESUMO

Superpixel segmentation targets at grouping pixels in an image into atomic regions whose boundaries align well with the natural object boundaries. This paper first proposes a new feature representation for superpixel segmentation that holistically embraces color, contour, texture, and spatial features. Then, we introduce a clustering-based discriminability measure to iteratively evaluate the importance of different features. Integrating the feature representation and the discriminability measure, we propose a novel content-adaptive superpixel (CAS) segmentation algorithm. CAS is able to automatically and iteratively adjust the weights of different features to fit various properties of image instances. Experiments on several challenging datasets demonstrate that the proposed CAS outperforms the state-of-the-art methods and has a low computational cost.

13.
IEEE Trans Neural Netw Learn Syst ; 29(7): 2944-2959, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28644814

RESUMO

Most learning methods contain optimization as a substep, where the nondifferentiability and multimodality of objectives push forward the interplay of evolutionary optimization algorithms and machine learning models. The recently emerged evolutionary multimodal optimization (MMOP) technique enables the learning of diverse sets of effective parameters for the models simultaneously, providing new opportunities to the applications requiring both accuracy and diversity, such as ensemble, interactive, and interpretive learning. Targeting at locating multiple optima simultaneously in the multimodal landscape, this paper develops an efficient neighborhood-based niching algorithm. Bare-bones differential evolution is used as the baseline. Further, using Gaussian mutation with local mean and standard deviations, the neighborhoods capture niches that match well with the contours of peaks in the landscape. To increase diversity and enhance global exploration, the proposed algorithm embeds a diversity preserving operator to reinitialize converged or overlapped neighborhoods. The experimental results verify that the proposed algorithm has superior and consistent performance for a wide range of MMOP problems. Further, the algorithm has been successfully applied to train neural network ensembles, which validates its effectiveness and benefits of learning multimodal parameters.

14.
IEEE Trans Cybern ; 48(7): 2166-2180, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28767384

RESUMO

Nowadays, large-scale optimization problems are ubiquitous in many research fields. To deal with such problems efficiently, this paper proposes a distributed differential evolution with adaptive mergence and split (DDE-AMS) on subpopulations. The novel mergence and split operators are designed to make full use of limited population resource, which is important for large-scale optimization. They are adaptively performed based on the performance of the subpopulations. During the evolution, once a subpopulation finds a promising region, the current worst performing subpopulation will merge into it. If the merged subpopulation could not continuously provide competitive solutions, it will be split in half. In this way, the number of subpopulations is adaptively adjusted and better performing subpopulations obtain more individuals. Thus, population resource can be adaptively arranged for subpopulations during the evolution. Moreover, the proposed algorithm is implemented with a parallel master-slave manner. Extensive experiments are conducted on 20 widely used large-scale benchmark functions. Experimental results demonstrate that the proposed DDE-AMS could achieve competitive or even better performance compared with several state-of-the-art algorithms. The effects of DDE-AMS components, adaptive behavior, scalability, and parameter sensitivity are also studied. Finally, we investigate the speedup ratios of DDE-AMS with different computation resources.

15.
IEEE Trans Cybern ; 46(10): 2277-2290, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26394440

RESUMO

Social learning in particle swarm optimization (PSO) helps collective efficiency, whereas individual reproduction in genetic algorithm (GA) facilitates global effectiveness. This observation recently leads to hybridizing PSO with GA for performance enhancement. However, existing work uses a mechanistic parallel superposition and research has shown that construction of superior exemplars in PSO is more effective. Hence, this paper first develops a new framework so as to organically hybridize PSO with another optimization technique for "learning." This leads to a generalized "learning PSO" paradigm, the *L-PSO. The paradigm is composed of two cascading layers, the first for exemplar generation and the second for particle updates as per a normal PSO algorithm. Using genetic evolution to breed promising exemplars for PSO, a specific novel *L-PSO algorithm is proposed in the paper, termed genetic learning PSO (GL-PSO). In particular, genetic operators are used to generate exemplars from which particles learn and, in turn, historical search information of particles provides guidance to the evolution of the exemplars. By performing crossover, mutation, and selection on the historical information of particles, the constructed exemplars are not only well diversified, but also high qualified. Under such guidance, the global search ability and search efficiency of PSO are both enhanced. The proposed GL-PSO is tested on 42 benchmark functions widely adopted in the literature. Experimental results verify the effectiveness, efficiency, robustness, and scalability of the GL-PSO.


Assuntos
Algoritmos , Inteligência Artificial , Modelos Genéticos , Animais , Abelhas , Simulação por Computador , Genética Comportamental
16.
IEEE Trans Cybern ; 46(6): 1411-23, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26068933

RESUMO

This paper studies the optimization problem of topological active net (TAN), which is often seen in image segmentation and shape modeling. A TAN is a topological structure containing many nodes, whose positions must be optimized while a predefined topology needs to be maintained. TAN optimization is often time-consuming and even constructing a single solution is hard to do. Such a problem is usually approached by a "best improvement local search" (BILS) algorithm based on deterministic search (DS), which is inefficient because it spends too much efforts in nonpromising probing. In this paper, we propose the use of micro-differential evolution (DE) to replace DS in BILS for improved directional guidance. The resultant algorithm is termed deBILS. Its micro-population efficiently utilizes historical information for potentially promising search directions and hence improves efficiency in probing. Results show that deBILS can probe promising neighborhoods for each node of a TAN. Experimental tests verify that deBILS offers substantially higher search speed and solution quality not only than ordinary BILS, but also the genetic algorithm and scatter search algorithm.

17.
IEEE Trans Cybern ; 45(9): 1798-810, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25314717

RESUMO

Utilizing cumulative correlation information already existing in an evolutionary process, this paper proposes a predictive approach to the reproduction mechanism of new individuals for differential evolution (DE) algorithms. DE uses a distributed model (DM) to generate new individuals, which is relatively explorative, whilst evolution strategy (ES) uses a centralized model (CM) to generate offspring, which through adaptation retains a convergence momentum. This paper adopts a key feature in the CM of a covariance matrix adaptation ES, the cumulatively learned evolution path (EP), to formulate a new evolutionary algorithm (EA) framework, termed DEEP, standing for DE with an EP. Without mechanistically combining two CM and DM based algorithms together, the DEEP framework offers advantages of both a DM and a CM and hence substantially enhances performance. Under this architecture, a self-adaptation mechanism can be built inherently in a DEEP algorithm, easing the task of predetermining algorithm control parameters. Two DEEP variants are developed and illustrated in the paper. Experiments on the CEC'13 test suites and two practical problems demonstrate that the DEEP algorithms offer promising results, compared with the original DEs and other relevant state-of-the-art EAs.

18.
IEEE Trans Cybern ; 45(9): 1851-63, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25343775

RESUMO

Existing multiobjective evolutionary algorithms (MOEAs) tackle a multiobjective problem either as a whole or as several decomposed single-objective sub-problems. Though the problem decomposition approach generally converges faster through optimizing all the sub-problems simultaneously, there are two issues not fully addressed, i.e., distribution of solutions often depends on a priori problem decomposition, and the lack of population diversity among sub-problems. In this paper, a MOEA with double-level archives is developed. The algorithm takes advantages of both the multiobjective-problem-level and the sub-problem-level approaches by introducing two types of archives, i.e., the global archive and the sub-archive. In each generation, self-reproduction with the global archive and cross-reproduction between the global archive and sub-archives both breed new individuals. The global archive and sub-archives communicate through cross-reproduction, and are updated using the reproduced individuals. Such a framework thus retains fast convergence, and at the same time handles solution distribution along Pareto front (PF) with scalability. To test the performance of the proposed algorithm, experiments are conducted on both the widely used benchmarks and a set of truly disconnected problems. The results verify that, compared with state-of-the-art MOEAs, the proposed algorithm offers competitive advantages in distance to the PF, solution coverage, and search speed.


Assuntos
Algoritmos , Inteligência Artificial , Simulação por Computador , Modelos Estatísticos
19.
IEEE Trans Cybern ; 44(7): 1080-99, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24013834

RESUMO

The performance of differential evolution (DE) largely depends on its mutation strategy and control parameters. In this paper, we propose an adaptive DE (ADE) algorithm with a new mutation strategy DE/lbest/1 and a two-level adaptive parameter control scheme. The DE/lbest/1 strategy is a variant of the greedy DE/best/1 strategy. However, the population is mutated under the guide of multiple locally best individuals in DE/lbest/1 instead of one globally best individual in DE/best/1. This strategy is beneficial to the balance between fast convergence and population diversity. The two-level adaptive parameter control scheme is implemented mainly in two steps. In the first step, the population-level parameters Fp and CRp for the whole population are adaptively controlled according to the optimization states, namely, the exploration state and the exploitation state in each generation. These optimization states are estimated by measuring the population distribution. Then, the individual-level parameters Fi and CRi for each individual are generated by adjusting the population-level parameters. The adjustment is based on considering the individual's fitness value and its distance from the globally best individual. This way, the parameters can be adapted to not only the overall state of the population but also the characteristics of different individuals. The performance of the proposed ADE is evaluated on a suite of benchmark functions. Experimental results show that ADE generally outperforms four state-of-the-art DE variants on different kinds of optimization problems. The effects of ADE components, parameter properties of ADE, search behavior of ADE, and parameter sensitivity of ADE are also studied. Finally, we investigate the capability of ADE for solving three real-world optimization problems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...