Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Chinese Journal of Biotechnology ; (12): 2105-2115, 2021.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-887784

RESUMO

Triterpenoids are a class of natural products of great commercial value that are widely used in pharmaceutical, health care and cosmetic industries. The biosynthesis of triterpenoids relies on the efficient synthesis of squalene epoxide, which is synthesized from the NADPH dependent oxidation of squalene catalyzed by squalene epoxidase. We screened squalene epoxidases derived from different species, and found the truncated squalene epoxidase from Rattus norvegicus (RnSETC) showed the highest activity in engineered Escherichia coli. Further examination of the effect of endogenous cytochrome P450 reductase like (CPRL) proteins showed that overexpression of NADH: quinone oxidoreductase (WrbA) under Lac promoter in a medium-copy number plasmid increased the production of squalene epoxide by nearly 2.5 folds. These results demonstrated that the constructed pathway led to the production of squalene epoxide, an important precursor for the biosynthesis of triterpenoids.


Assuntos
Animais , Ratos , Escherichia coli/genética , NADPH-Ferri-Hemoproteína Redutase , Engenharia de Proteínas , Proteínas Repressoras , Esqualeno , Esqualeno Mono-Oxigenase/genética
2.
Appl Microbiol Biotechnol ; 97(18): 8069-77, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23868298

RESUMO

In this study, batch processes of pullulan production by Aureobasidium pullulans CCTCC M 2012259 under different pH environments were evaluated. The pH of the medium decreased quickly to an acid stress condition under batch fermentation without pH control. A higher pullulan production was always obtained with a lower biomass under a given glucose concentration with constant pH control, and vice versa. Based on the nonlinear regression analysis of the results obtained from diverse pH control modes, a constant controlled pH of 3.8 was predicted as an optimum pH for efficient pullulan production using a one-element cubic equation. A maximum pullulan concentration of 26.8 g/L and a minimum biomass of 8.1 g/L were achieved under the optimal pH of 3.8, which were in good agreement with the results predicted by the mathematical model. Further information on the physiological characteristics of A. pullulans CCTCC M 2012259 such as intracellular pH, NADH/NAD(+), ATP/ADP, and glutathione generation under moderate or severe acidic conditions were investigated, and the results presented more evidence on why pullulan biosynthesized with high efficiency under moderate acid stress (e.g., pH 3.8), which would also help us to better understand the response of the cells to acid stress.


Assuntos
Ácidos/metabolismo , Ascomicetos/metabolismo , Glucanos/metabolismo , Ascomicetos/química , Ascomicetos/crescimento & desenvolvimento , Biomassa , Meios de Cultura/química , Meios de Cultura/metabolismo , Fermentação , Concentração de Íons de Hidrogênio
3.
Biotechnol Res Int ; 2011: 238456, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21350658

RESUMO

The effects of amino acids addition on cell growth, glutathione biosynthesis, glutathione distribution, and the intracellular oxidation-reduction environment of Candida utilis SZU 07-01 during selenium enrichment were investigated in this study. Most amino acids under appropriate concentrations have positive effects on cell growth of the yeast strain, except for phenylalanine and proline, compared with the control without amino acid addition. The bioconversion of selenite to organic selenium induced the reduction of glutathione synthesis and intracellular distribution of glutathione. However, amino acids including cysteine, glutamine, glutamic acid, isoleucine, leucine, and tyrosine could effectively promote the selenium-enriched yeast to elevate glutathione production, especially increasing the intracellular glutathione content. Moreover, addition of these six different amino acids apparently decreased malondialdehyde concentration and recovered the normal intracellular redox environment of the selenium-enriched C. utilis SZU 07-01. The improvement of physiological characteristic of the selenium-enriched yeast by increasing intracellular glutathione content and lowering malondialdehyde content will undoubtedly help to widen application of selenium-enriched yeast as food or feed additives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...