Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 99(3-1): 031201, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30999535

RESUMO

The cascaded production and dynamics of electron-positron plasma in ultimately focused laser fields of extreme intensity are studied by three-dimensional particle-in-cell simulations with the account of the relevant processes of quantum electrodynamics (QED). We show that, if the laser facility provides a total power above 20 PW, it is possible to trigger not only a QED cascade but also pinching in the produced electron-positron plasma. The plasma self-compression in this case leads to an abrupt rise of the peak density and magnetic (electric) field up to at least 10^{28}cm^{-3} and 1/20 (1/40) of the Schwinger field, respectively. Determining the actual limits and physics of this process might require quantum treatment beyond the used standard semiclassical approach. The proposed setup can thus provide extreme conditions for probing and exploring fundamental physics of the matter and vacuum.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(4 Pt 2): 046403, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22181279

RESUMO

The generation of ultrastrong attosecond pulses through laser-plasma interactions offers the opportunity to surpass the intensity of any known laboratory radiation source, giving rise to new experimental possibilities, such as quantum electrodynamical tests and matter probing at extremely short scales. Here we demonstrate that a laser irradiated plasma surface can act as an efficient converter from the femto- to the attosecond range, giving a dramatic rise in pulse intensity. Although seemingly similar schemes have been described in the literature, the present setup differs significantly from the previous attempts. We present a model describing the nonlinear process of relativistic laser-plasma interaction. This model, which is applicable to a multitude of phenomena, is shown to be in excellent agreement with particle-in-cell simulations. The model makes it possible to determine a parameter region where the energy conversion from the femto- to the attosecond regime is maximal. Based on the study we propose a concept of laser pulse interaction with a target having a groove-shaped surface, which opens up the potential to exceed an intensity level of 10(26) W/cm(2) and observe effects due to nonlinear quantum electrodynamics with upcoming laser sources.

3.
Phys Rev Lett ; 107(4): 043902, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21867007

RESUMO

We investigate numerically and analytically the polarization properties of high-order harmonics generated by an atom in intense elliptically polarized laser field. The offset angle of the harmonic polarization ellipse can be well described with the semiclassic "simple-man" high-harmonic generation model. The harmonic ellipticity itself, however, can be hardly understood within this model. We show that this ellipticity originates from quantum-mechanical uncertainty of the electron motion. We develop a theoretical approach describing this ellipticity and, more generally, the time evolution of the high-harmonic polarization state within the laser cycle. The analytical results are verified with the exact numerical solution; to make the comparison accurately, we develop a specific technique for separating the contributions of quantum paths in the numerical calculation.

4.
Phys Rev Lett ; 102(18): 184801, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19518877

RESUMO

The regime of multicascade proton acceleration during the interaction of a 10(21)-10(22) W/cm2 laser pulse with a structured target is proposed. The regime is based on the electron charge displacement under the action of laser ponderomotive force and on the effect of relativistically induced slab transparency which allows realization of the idea of multicascade acceleration. It is shown that a target comprising several thin foils properly spaced apart can optimize the acceleration process and give at the output a quasi-monoenergetic beam of protons with energies up to hundreds of MeV with an energy spread of just a few percent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...