Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 55(3): 389-398, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823319

RESUMO

Interacting proteins tend to have similar functions, influencing the same organismal traits. Interaction networks can be used to expand the list of candidate trait-associated genes from genome-wide association studies. Here, we performed network-based expansion of trait-associated genes for 1,002 human traits showing that this recovers known disease genes or drug targets. The similarity of network expansion scores identifies groups of traits likely to share an underlying genetic and biological process. We identified 73 pleiotropic gene modules linked to multiple traits, enriched in genes involved in processes such as protein ubiquitination and RNA processing. In contrast to gene deletion studies, pleiotropy as defined here captures specifically multicellular-related processes. We show examples of modules linked to human diseases enriched in genes with known pathogenic variants that can be used to map targets of approved drugs for repurposing. Finally, we illustrate the use of network expansion scores to study genes at inflammatory bowel disease genome-wide association study loci, and implicate inflammatory bowel disease-relevant genes with strong functional and genetic support.


Assuntos
Biologia Celular , Células , Doença , Estudos de Associação Genética , Pleiotropia Genética , Estudos de Associação Genética/métodos , Humanos , Ubiquitinação/genética , Processamento Pós-Transcricional do RNA/genética , Células/metabolismo , Células/patologia , Reposicionamento de Medicamentos/métodos , Reposicionamento de Medicamentos/tendências , Doença/genética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Estudo de Associação Genômica Ampla , Fenótipo , Doenças Autoimunes/genética , Doenças Autoimunes/patologia
2.
Res Q Exerc Sport ; 94(2): 529-537, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35438618

RESUMO

Purpose: The aim of this study was to analyze the evolution of the four most important leagues and to identify if there are differences between the English Premier League and the rest of the European leagues. Methods: Each team was characterized according to a set of 52 variables including offensive, defensive, and buildup 10 variables that were computed from OPTA's on-ball event records of the matches for main national leagues between the 2014 and 2018 seasons. To test the evolution of leagues, the t-SNE dimensionality reduction technique was used. To better understand the differences between leagues and teams, the most discriminating variables were obtained as a set of rules discovered by RIPPER, a machine learning algorithm. Results: The evolution of playing styles has meant that teams in the major European leagues seem to 15 be approaching homogeneity of technical-tactical behavior. Despite this, a distinction can be seen between the English teams concerning the rest of the teams in the other leagues, determined by fewer free kicks, fewer long passes but more vertical, more errors in ball control but greater success in dribbling. Conclusions: These results provide important knowledge and practical applications because of the study of the different variables and performance indicators among the best football championships.


Assuntos
Desempenho Atlético , Futebol Americano , Humanos , Inteligência Artificial , Estudos Longitudinais , Logro
3.
Cell Metab ; 31(3): 472-492, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130880

RESUMO

The AMPK (AMP-activated protein kinase) and TOR (target-of-rapamycin) pathways are interlinked, opposing signaling pathways involved in sensing availability of nutrients and energy and regulation of cell growth. AMPK (Yin, or the "dark side") is switched on by lack of energy or nutrients and inhibits cell growth, while TOR (Yang, or the "bright side") is switched on by nutrient availability and promotes cell growth. Genes encoding the AMPK and TOR complexes are found in almost all eukaryotes, suggesting that these pathways arose very early during eukaryotic evolution. During the development of multicellularity, an additional tier of cell-extrinsic growth control arose that is mediated by growth factors, but these often act by modulating nutrient uptake so that AMPK and TOR remain the underlying regulators of cellular growth control. In this review, we discuss the evolution, structure, and regulation of the AMPK and TOR pathways and the complex mechanisms by which they interact.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Células/metabolismo , Nutrientes/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/genética , Animais , Proliferação de Células , Dano ao DNA , Humanos
4.
Front Microbiol ; 10: 1686, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417508

RESUMO

The eukaryotic domain-conserved TORC1 signalling pathway connects growth with nutrient sufficiency, promoting anabolic processes such as ribosomal biogenesis and protein synthesis. In Saccharomyces cerevisiae, TORC1 is activated mainly by the nitrogen sources. Recently, this pathway has gotten renewed attention but now in the context of the alcoholic fermentation, due to its key role in nitrogen metabolism regulation. Although the distal and proximal effectors downstream TORC1 are well characterised in yeast, the mechanism by which TORC1 is activated by nitrogen sources is not fully understood. In this work, we took advantage of a previously developed microculture-based methodology, which indirectly evaluates TORC1 activation in a nitrogen upshift experiment, to identify genetic variants affecting the activation of this pathway. We used this method to phenotype a recombinant population derived from two strains (SA and WE) with different geographic origins, which show opposite phenotypes for TORC1 activation by glutamine. Using this phenotypic information, we performed a QTL mapping that allowed us to identify several QTLs for TORC1 activation. Using a reciprocal hemizygous analysis, we validated GUS1, KAE1, PIB2, and UTH1 as genes responsible for the natural variation in the TORC1 activation. We observed that reciprocal hemizygous strains for KAE1 (ATPase required for t6A tRNA modification) gene showed the greatest phenotypic differences for TORC1 activation, with the hemizygous strain carrying the SA allele (KAE1 SA ) showing the higher TORC1 activation. In addition, we evaluated the fermentative capacities of the hemizygous strains under low nitrogen conditions, observing an antagonistic effect for KAE1 SA allele, where the hemizygous strain containing this allele presented the lower fermentation rate. Altogether, these results highlight the importance of the tRNA processing in TORC1 activation and connects this pathway with the yeasts fermentation kinetics under nitrogen-limited conditions.

5.
PLoS One ; 14(7): e0219487, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31291321

RESUMO

Erwinia uzenensis is a plant-pathogenic bacterium, recently described in Japan, which infects pear trees, causing the 'bacterial black shoot disease of European pear' (BBSDP). Like other Erwinia pear pathogens, E. uzenensis causes damp, black lesions on young shoots resembling those of E. amylovora, but not blossom blight, fruitlet blight or wilting of the shoot tip. The distribution of E. uzenensis seems restricted to the country where it was reported up to now, but it may spread to other countries and affect new hosts, as is the current situation with E. piriflorinigrans and E. pyrifoliae. Fast and accurate detection systems for this new pathogen are needed to study its biology and to identify it on pear or other hosts. We report here the development of a specific and sensitive detection protocol based on a real-time PCR with a TaqMan probe for E. uzenensis, and its evaluation. In sensitivity assays, the detection threshold of this protocol was 101 cfu ml-1 on pure bacterial cultures and 102-103 cfu ml-1 on spiked plant material. The specificity of the protocol was evaluated against E. uzenensis and 46 strains of pear-associated Erwinia species different to E. uzenensis. No cross-reaction with the non-target bacterial species or the loss of sensitivity were observed. This specific and sensitive diagnostic tool may reveal a wider distribution and host range of E. uzenensis initially considered restricted to a region and will expand our knowledge of the life cycle and environmental preferences of this pathogen.


Assuntos
Erwinia/isolamento & purificação , Doenças das Plantas/microbiologia , Pyrus/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , DNA Bacteriano/isolamento & purificação , Erwinia/genética , Japão , Óperon/genética , RNA Ribossômico/genética , Sensibilidade e Especificidade
6.
Mol Biol Evol ; 36(4): 691-708, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657986

RESUMO

Pre-existing and de novo genetic variants can both drive adaptation to environmental changes, but their relative contributions and interplay remain poorly understood. Here we investigated the evolutionary dynamics in drug-treated yeast populations with different levels of pre-existing variation by experimental evolution coupled with time-resolved sequencing and phenotyping. We found a doubling of pre-existing variation alone boosts the adaptation by 64.1% and 51.5% in hydroxyurea and rapamycin, respectively. The causative pre-existing and de novo variants were selected on shared targets: RNR4 in hydroxyurea and TOR1, TOR2 in rapamycin. Interestingly, the pre-existing and de novo TOR variants map to different functional domains and act via distinct mechanisms. The pre-existing TOR variants from two domesticated strains exhibited opposite rapamycin resistance effects, reflecting lineage-specific functional divergence. This study provides a dynamic view on how pre-existing and de novo variants interactively drive adaptation and deepens our understanding of clonally evolving populations.


Assuntos
Evolução Biológica , Farmacorresistência Fúngica/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Hidroxiureia , Mutação , Fosfatidilinositol 3-Quinases/genética , Locos de Características Quantitativas , Proteínas de Saccharomyces cerevisiae/genética , Seleção Genética , Sirolimo
7.
Yeast ; 36(1): 65-74, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30094872

RESUMO

Saccharomyces cerevisiae is the main species responsible for the alcoholic fermentation in wine production. One of the main problems in this process is the deficiency of nitrogen sources in the grape must, which can lead to stuck or sluggish fermentations. Currently, yeast nitrogen consumption and metabolism are under active inquiry, with emphasis on the study of the TORC1 signalling pathway, given its central role responding to nitrogen availability and influencing growth and cell metabolism. However, the mechanism by which different nitrogen sources activates TORC1 is not completely understood. Existing methods to evaluate TORC1 activation by nitrogen sources are time-consuming, making difficult the analyses of large numbers of strains. In this work, a new indirect method for monitoring TORC1 pathway was developed on the basis of the luciferase reporter gene controlled by the promoter region of RPL26A gene, a gene known to be expressed upon TORC1 activation. The method was tested in strains representative of the clean lineages described so far in S. cerevisiae. The activation of the TORC1 pathway by a proline-to-glutamine upshift was indirectly evaluated using our system and the traditional direct methods based on immunoblot (Sch9 and Rps6 phosphorylation). Regardless of the different molecular readouts obtained with both methodologies, the general results showed a wide phenotypic variation between the representative strains analysed. Altogether, this easy-to-use assay opens the possibility to study the molecular basis for the differential TORC1 pathway activation, allowing to interrogate a larger number of strains in the context of nitrogen metabolism phenotypic differences.


Assuntos
Variação Genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Saccharomyces cerevisiae/genética , Transdução de Sinais , Fermentação , Regulação Fúngica da Expressão Gênica , Genes Reporter , Luciferases/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Fosforilação , Regiões Promotoras Genéticas , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
8.
EMBO J ; 36(4): 397-408, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28096180

RESUMO

Coordinating cell growth with nutrient availability is critical for cell survival. The evolutionarily conserved TOR (target of rapamycin) controls cell growth in response to nutrients, in particular amino acids. As a central controller of cell growth, mTOR (mammalian TOR) is implicated in several disorders, including cancer, obesity, and diabetes. Here, we review how nutrient availability is sensed and transduced to TOR in budding yeast and mammals. A better understanding of how nutrient availability is transduced to TOR may allow novel strategies in the treatment for mTOR-related diseases.


Assuntos
Alimentos , Mamíferos/fisiologia , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Proliferação de Células , Metabolismo Energético
9.
Biochim Biophys Acta Mol Cell Res ; 1864(2): 314-323, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27864078

RESUMO

In response to different adverse conditions, most eukaryotic organisms, including Saccharomyces cerevisiae, downregulate protein synthesis through the phosphorylation of eIF2α (eukaryotic initiation factor 2α) by Gcn2, a highly conserved protein kinase. Gcn2 also controls the translation of Gcn4, a transcription factor involved in the induction of amino acid biosynthesis enzymes. Here, we have studied the functional role of Gcn2 and Gcn2-regulating proteins, in controlling translation during temperature downshifts of TRP1 and trp1 yeast cells. Our results suggest that neither cold-instigated amino acid limitation nor Gcn2 are involved in the translation suppression at low temperature. However, loss of TRP1 causes increased eIF2α phosphorylation, Gcn2-dependent polysome disassembly and overactivity of Gcn4, which result in cold-sensitivity. Indeed, knock-out of GCN2 improves cold growth of trp1 cells. Likewise, mutation of several Gcn2-regulators and effectors results in cold-growth effects. Remarkably, we found that Hog1, the osmoresponsive MAPK, plays a role in the regulatory mechanism of Gcn2-eIF2α. Finally, we demonstrated that P-body formation responds to a downshift in temperature in a TRP1-dependent manner and is required for cold tolerance.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Biossíntese de Proteínas , Saccharomyces cerevisiae/fisiologia , Triptofano/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Metabolismo Energético , Fatores de Iniciação em Eucariotos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Triptofano/metabolismo
10.
Mol Microbiol ; 101(4): 671-87, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27169355

RESUMO

Lack of the yeast Ptc1 Ser/Thr protein phosphatase results in numerous phenotypic defects. A parallel search for high-copy number suppressors of three of these phenotypes (sensitivity to Calcofluor White, rapamycin and alkaline pH), allowed the isolation of 25 suppressor genes, which could be assigned to three main functional categories: maintenance of cell wall integrity (CWI), vacuolar function and protein sorting, and cell cycle regulation. The characterization of these genetic interactions strengthens the relevant role of Ptc1 in downregulating the Slt2-mediated CWI pathway. We show that under stress conditions activating the CWI pathway the ptc1 mutant displays hyperphosphorylated Cdc28 kinase and that these cells accumulate with duplicated DNA content, indicative of a G2-M arrest. Clb2-associated Cdc28 activity was also reduced in ptc1 cells. These alterations are attenuated by mutation of the MKK1 gene, encoding a MAP kinase kinase upstream Slt2. Therefore, our data show that Ptc1 is required for proper G2-M cell cycle transition after activation of the CWI pathway.


Assuntos
Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Parede Celular/genética , Parede Celular/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteína Fosfatase 2/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Genetics ; 202(1): 141-56, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26546002

RESUMO

The Saccharomyces cerevisiae type 2C protein phosphatase Ptc1 is required for a wide variety of cellular functions, although only a few cellular targets have been identified. A genetic screen in search of mutations in protein kinase-encoding genes able to suppress multiple phenotypic traits caused by the ptc1 deletion yielded a single gene, MKK1, coding for a MAPK kinase (MAPKK) known to activate the cell-wall integrity (CWI) Slt2 MAPK. In contrast, mutation of the MKK1 paralog, MKK2, had a less significant effect. Deletion of MKK1 abolished the increased phosphorylation of Slt2 induced by the absence of Ptc1 both under basal and CWI pathway stimulatory conditions. We demonstrate that Ptc1 acts at the level of the MAPKKs of the CWI pathway, but only the Mkk1 kinase activity is essential for ptc1 mutants to display high Slt2 activation. We also show that Ptc1 is able to dephosphorylate Mkk1 in vitro. Our results reveal the preeminent role of Mkk1 in signaling through the CWI pathway and strongly suggest that hyperactivation of Slt2 caused by upregulation of Mkk1 is at the basis of most of the phenotypic defects associated with lack of Ptc1 function.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Proteína Fosfatase 2/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
12.
Cold Spring Harb Perspect Biol ; 7(8): a019141, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26238356

RESUMO

Cell growth is a highly regulated, plastic process. Its control involves balancing positive regulation of anabolic processes with negative regulation of catabolic processes. Although target of rapamycin (TOR) is a major promoter of growth in response to nutrients and growth factors, AMP-activated protein kinase (AMPK) suppresses anabolic processes in response to energy stress. Both TOR and AMPK are conserved throughout eukaryotic evolution. Here, we review the fundamentally important roles of these two kinases in the regulation of cell growth with particular emphasis on their mutually antagonistic signaling.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Divisão Celular/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Animais , Humanos , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
13.
Mol Syst Biol ; 11(4): 802, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25888284

RESUMO

Cells react to nutritional cues in changing environments via the integrated action of signaling, transcriptional, and metabolic networks. Mechanistic insight into signaling processes is often complicated because ubiquitous feedback loops obscure causal relationships. Consequently, the endogenous inputs of many nutrient signaling pathways remain unknown. Recent advances for system-wide experimental data generation have facilitated the quantification of signaling systems, but the integration of multi-level dynamic data remains challenging. Here, we co-designed dynamic experiments and a probabilistic, model-based method to infer causal relationships between metabolism, signaling, and gene regulation. We analyzed the dynamic regulation of nitrogen metabolism by the target of rapamycin complex 1 (TORC1) pathway in budding yeast. Dynamic transcriptomic, proteomic, and metabolomic measurements along shifts in nitrogen quality yielded a consistent dataset that demonstrated extensive re-wiring of cellular networks during adaptation. Our inference method identified putative downstream targets of TORC1 and putative metabolic inputs of TORC1, including the hypothesized glutamine signal. The work provides a basis for further mechanistic studies of nitrogen metabolism and a general computational framework to study cellular processes.


Assuntos
Regulação Fúngica da Expressão Gênica , RNA Fúngico/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Causalidade , Ciclo Celular , Simulação por Computador , Meios de Cultura/farmacologia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Metaboloma , Modelos Biológicos , Nitrogênio/metabolismo , Probabilidade , Proteoma , RNA Fúngico/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Transdução de Sinais
14.
PLoS One ; 10(3): e0120250, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25767889

RESUMO

The target of rapamycin complex 1 (TORC1) is an evolutionarily conserved sensor of nutrient availability. Genetic and pharmacological studies in the yeast Saccharomyces cerevisiae have provided mechanistic insights on the regulation of TORC1 signaling in response to nutrients. Using a highly specific antibody that recognizes phosphorylation of the bona fide TORC1 target ribosomal protein S6 (Rps6) in yeast, we found that nutrients rapidly induce Rps6 phosphorylation in a TORC1-dependent manner. Moreover, we demonstrate that Ypk3, an AGC kinase which exhibits high homology to human S6 kinase (S6K), is required for the phosphorylation of Rps6 in vivo. Rps6 phosphorylation is completely abolished in cells lacking Ypk3 (ypk3Δ), whereas Sch9, previously reported to be the yeast ortholog of S6K, is dispensable for Rps6 phosphorylation. Phosphorylation-deficient mutations in regulatory motifs of Ypk3 abrogate Rps6 phosphorylation, and complementation of ypk3Δ cells with human S6 kinase restores Rps6 phosphorylation in a rapamycin-sensitive manner. Our findings demonstrate that Ypk3 is a critical component of the TORC1 pathway and that the use of a phospho-S6 specific antibody offers a valuable tool to identify new nutrient-dependent and rapamycin-sensitive targets in vivo.


Assuntos
Proteínas Quinases Reguladas por Nucleotídeo Cíclico/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Análise de Variância , Escherichia coli , Immunoblotting , Fosforilação , Plasmídeos/genética , Reação em Cadeia da Polimerase
15.
Mol Microbiol ; 95(3): 555-72, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25425491

RESUMO

Maintenance of ion homeostatic mechanisms is essential for living cells, including the budding yeast Saccharomyces cerevisiae. Whereas the impact of changes in phosphate metabolism on metal ion homeostasis has been recently examined, the inverse effect is still largely unexplored. We show here that depletion of potassium from the medium or alteration of diverse regulatory pathways controlling potassium uptake, such as the Trk potassium transporters or the Pma1 H(+) -ATPase, triggers a response that mimics that of phosphate (Pi) deprivation, exemplified by accumulation of the high-affinity Pi transporter Pho84. This response is mediated by and requires the integrity of the PHO signaling pathway. Removal of potassium from the medium does not alter the amount of total or free intracellular Pi, but is accompanied by decreased ATP and ADP levels and rapid depletion of cellular polyphosphates. Therefore, our data do not support the notion of Pi being the major signaling molecule triggering phosphate-starvation responses. We also observe that cells with compromised potassium uptake cannot grow under limiting Pi conditions. The link between potassium and phosphate homeostasis reported here could explain the invasive phenotype, characteristic of nutrient deprivation, observed in potassium-deficient yeast cells.


Assuntos
Homeostase , Fosfatos/metabolismo , Potássio/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Citoplasma/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Polifosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
16.
Mol Microbiol ; 90(2): 367-82, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23962284

RESUMO

Saccharomyces cerevisiae Hal3 and Vhs3 are moonlighting proteins, forming an atypical heterotrimeric decarboxylase (PPCDC) required for CoA biosynthesis, and regulating cation homeostasis by inhibition of the Ppz1 phosphatase. The Schizosaccharomyces pombe ORF SPAC15E1.04 (renamed as Sp hal3) encodes a protein whose amino-terminal half is similar to Sc Hal3 whereas its carboxyl-terminal half is related to thymidylate synthase (TS). We show that Sp Hal3 and/or its N-terminal domain retain the ability to bind to and modestly inhibit in vitro S. cerevisiae Ppz1 as well as its S. pombe homolog Pzh1, and also exhibit PPCDC activity in vitro and provide PPCDC function in vivo, indicating that Sp Hal3 is a monogenic PPCDC in fission yeast. Whereas the Sp Hal3 N-terminal domain partially mimics Sc Hal3 functions, the entire protein and its carboxyl-terminal domain rescue the S. cerevisiae cdc21 mutant, thus proving TS function. Additionally, we show that the 70 kDa Sp Hal3 protein is not proteolytically processed under diverse forms of stress and that, as predicted, Sp hal3 is an essential gene. Therefore, Sp hal3 represents a fusion event that joined three different functional activities in the same gene. The possible advantage derived from this surprising combination of essential proteins is discussed.


Assuntos
Carboxiliases/metabolismo , Fusão Gênica , Genes Fúngicos , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Timidilato Sintase/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Genes Essenciais , Fases de Leitura Aberta , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas Recombinantes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Homologia de Sequência de Aminoácidos , Timidilato Sintase/genética
17.
PLoS One ; 8(5): e64470, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23704987

RESUMO

Ptc6 is one of the seven components (Ptc1-Ptc7) of the protein phosphatase 2C family in the yeast Saccharomyces cerevisiae. In contrast to other type 2C phosphatases, the cellular role of this isoform is poorly understood. We present here a comprehensive characterization of this gene product. Cells lacking Ptc6 are sensitive to zinc ions, and somewhat tolerant to cell-wall damaging agents and to Li(+). Ptc6 mutants are sensitive to rapamycin, albeit to lesser extent than ptc1 cells. This phenotype is not rescued by overexpression of PTC1 and mutation of ptc6 does not reproduce the characteristic genetic interactions of the ptc1 mutation with components of the TOR pathway, thus suggesting different cellular roles for both isoforms. We show here that the rapamycin-sensitive phenotype of ptc6 cells is unrelated to the reported role of Pt6 in controlling pyruvate dehydrogenase activity. Lack of Ptc6 results in substantial attenuation of the transcriptional response to rapamycin, particularly in the subset of repressed genes encoding ribosomal proteins or involved in rRNA processing. In contrast, repressed genes involved in translation are Ptc6-independent. These effects cannot be attributed to the regulation of the Sch9 kinase, but they could involve modulation of the binding of the Ifh1 co-activator to specific gene promoters.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Fosfoproteínas Fosfatases/metabolismo , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sirolimo/farmacologia , Regulação para Baixo/genética , Epistasia Genética/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos/genética , Glucose/farmacologia , Mitofagia/efeitos dos fármacos , Mitofagia/genética , Mutação/genética , Fenótipo , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
18.
Fungal Genet Biol ; 53: 1-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23454581

RESUMO

Yeast flocculation and invasive growth are processes of great interest in fundamental biology and also relevant in biotechnology and medicine. Hal3 and Vhs3 are moonlighting proteins acting in Saccharomyces cerevisiae both as inhibitors of the Ppz protein phosphatases and as components of a catalytic step in CoA biosynthesis. The double hal3 vhs3 mutant is not viable but, under semi-permissive conditions, the tetO:HAL3 vhs3 strain shows a flocculent phenotype, invasive growth and increased expression of the flocculin-encoding FLO11 gene. We show here that all these effects are caused by hyperactivation of Ppz1 as a result of depletion of its natural inhibitors. The evidence indicates that hyperactivation of Ppz1 would impair potassium transport through the Trk1/Trk2 transporters, thus resulting in a decrease in the intracellular pH and a subsequent increase in the levels of cAMP. Mutation of the TPK2 isoform of protein kinase A blocks the increase in FLO11 expression, and eliminates the flocculent and invasive phenotypes produced by depletion of Hal3 and Vhs3. Interestingly, mutation of RIM101 also significantly decreases FLO11 expression under these conditions. Cells lacking Trk1,2 display an invasive phenotype that is abolished by deletion of FLO8 or by increasing the potassium concentration in the medium. Therefore, our results support a model in which hyperactivation of Ppz phosphatases would result in alteration of potassium transport, activation of Tpk2 and signaling to the FLO11 promoter by means of the Flo8 transcription factor, thus modulating flocculation and invasive growth. This model highlights an unsuspected link between potassium homeostasis and these important morphogenetic events.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Homeostase , Mutação , Potássio/metabolismo , Leveduras/genética , Leveduras/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/genética , Regulação Fúngica da Expressão Gênica , Fenótipo , Fosfoproteínas Fosfatases/metabolismo , Transdução de Sinais , Leveduras/patogenicidade
19.
Microbiologyopen ; 1(2): 182-93, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22950024

RESUMO

Saccharomyces cerevisiae wild-type (BY4741) and the corresponding mutant lacking the plasma membrane main potassium uptake systems (trk1,trk2) were used to analyze the consequences of K(+) starvation following a proteomic approach. In order to trigger high-affinity mode of potassium transport, cells were transferred to potassium-free medium. Protein profile was followed by two-dimensional (2-D) gels in samples taken at 0, 30, 60, 120, 180, and 300 min during starvation. We observed a general decrease of protein content during starvation that was especially drastic in the mutant strain as it was the case of an important number of proteins involved in glycolysis. On the contrary, we identified proteins related to stress response and alternative energetic metabolism that remained clearly present. Neural network-based analysis indicated that wild type was able to adapt much faster than the mutant to the stress process. We conclude that complete potassium starvation is a stressful process for yeast cells, especially for potassium transport mutants, and we propose that less stressing conditions should be used in order to study potassium homeostasis in yeast.

20.
Fungal Genet Biol ; 49(9): 708-16, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22750657

RESUMO

The genome of the filamentous fungus Aspergillus nidulans harbors the gene ppzA that codes for the catalytic subunit of protein phosphatase Z (PPZ), and the closely related opportunistic pathogen Aspergillus fumigatus encompasses a highly similar PPZ gene (phzA). When PpzA and PhzA were expressed in Saccharomyces cerevisiae or Schizosaccharomyces pombe they partially complemented the deleted phosphatases in the ppz1 or the pzh1 mutants, and they also mimicked the effect of Ppz1 overexpression in slt2 MAP kinase deficient S. cerevisiae cells. Although ppzA acted as the functional equivalent of the known PPZ enzymes its disruption in A. nidulans did not result in the expected phenotypes since it failed to affect salt tolerance or cell wall integrity. However, the inactivation of ppzA resulted in increased sensitivity to oxidizing agents like tert-butylhydroperoxide, menadione, and diamide. To demonstrate the general validity of our observations we showed that the deletion of the orthologous PPZ genes in other model organisms, such as S. cerevisiae (PPZ1) or Candida albicans (CaPPZ1) also caused oxidative stress sensitivity. Thus, our work reveals a novel function of the PPZ enzyme in A. nidulans that is conserved in very distantly related fungi.


Assuntos
Aspergillus nidulans/enzimologia , Proteínas Fúngicas/metabolismo , Estresse Oxidativo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Sequência de Aminoácidos , Aspergillus nidulans/genética , Domínio Catalítico , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Expressão Gênica , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...