Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 29(4): 855-857, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36878014

RESUMO

We reconstructed the SARS-CoV-2 epidemic caused by Omicron variant in Puerto Rico by sampling genomes collected during October 2021-May 2022. Our study revealed that Omicron BA.1 emerged and replaced Delta as the predominant variant in December 2021. Increased transmission rates and a dynamic landscape of Omicron sublineage infections followed.


Assuntos
COVID-19 , Epidemias , Humanos , Porto Rico/epidemiologia , SARS-CoV-2/genética , COVID-19/epidemiologia
2.
Commun Med (Lond) ; 2: 100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968047

RESUMO

Background: Puerto Rico has experienced the full impact of the COVID-19 pandemic. Since SARS-CoV-2, the virus that causes COVID-19, was first detected on the island in March of 2020, it spread rapidly though the island's population and became a critical threat to public health. Methods: We conducted a genomic surveillance study through a partnership with health agencies and academic institutions to understand the emergence and molecular epidemiology of the virus on the island. We sampled COVID-19 cases monthly over 19 months and sequenced a total of 753 SARS-CoV-2 genomes between March 2020 and September 2021 to reconstruct the local epidemic in a regional context using phylogenetic inference. Results: Our analyses reveal that multiple importation events propelled the emergence and spread of the virus throughout the study period, including the introduction and spread of most SARS-CoV-2 variants detected world-wide. Lineage turnover cycles through various phases of the local epidemic were observed, where the predominant lineage was replaced by the next competing lineage or variant after ~4 months of circulation locally. We also identified the emergence of lineage B.1.588, an autochthonous lineage that predominated in Puerto Rico from September to December 2020 and subsequently spread to the United States. Conclusions: The results of this collaborative approach highlight the importance of timely collection and analysis of SARS-CoV-2 genomic surveillance data to inform public health responses.

3.
Res Sq ; 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35075454

RESUMO

Puerto Rico has experienced the full impact of the COVID-19 pandemic. Since SARS-CoV-2, the virus that causes COVID-19, was first detected on the island in March of 2020, it spread rapidly though the island’s population and became a critical threat to public health. We conducted a genomic surveillance study through a partnership with health agencies and academic institutions to understand the emergence and molecular epidemiology of the virus on the island. We sampled COVID-19 cases monthly over 19 months and sequenced a total of 753 SARS-CoV-2 genomes between March 2020 and September 2021 to reconstruct the local epidemic in a regional context using phylogenetic inference. Our analyses revealed that multiple importation events propelled the emergence and spread of the virus throughout the study period, including the introduction and spread of most SARS-CoV-2 variants detected world-wide. Lineage turnover cycles through various phases of the local epidemic were observed, where the predominant lineage was replaced by the next competing lineage or variant after approximately 4 months of circulation locally. We also identified the emergence of lineage B.1.588, an autochthonous lineage that predominated circulation in Puerto Rico from September to December 2020 and subsequently spread to the United States. The results of this collaborative approach highlight the importance of timely collection and analysis of SARS-CoV-2 genomic surveillance data to inform public health responses.

4.
Emerg Infect Dis ; 27(11): 2971-2973, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34670646

RESUMO

We reconstructed the 2016-2017 Zika virus epidemic in Puerto Rico by using complete genomes to uncover the epidemic's origin, spread, and evolutionary dynamics. Our study revealed that the epidemic was propelled by multiple introductions that spread across the island, intricate evolutionary patterns, and ≈10 months of cryptic transmission.


Assuntos
Epidemias , Infecção por Zika virus , Zika virus , Evolução Molecular , Humanos , Porto Rico/epidemiologia , Zika virus/genética , Infecção por Zika virus/epidemiologia
5.
J Clin Microbiol ; 57(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30760533

RESUMO

The global expansion of dengue viruses (DENV-1 to DENV-4) has contributed to the divergence, transmission, and establishment of genetic lineages of epidemiological concern; however, tracking the phylogenetic relationships of these virus is not always possible due to the inability of standardized sequencing procedures in resource-limited public health laboratories. Consequently, public genomic data banks contain inadequate representation of geographical regions and historical periods. In order to improve detection of the DENV-1 to DENV-4 lineages, we report the development of a serotype-specific Sanger-based method standardized to sequence DENV-1 to DENV-4 directly from clinical samples using universal primers that detect most DENV genotypes. The resulting envelope protein coding sequences are analyzed for genotyping with phylogenetic methods. We evaluated the performance of this method by detecting, amplifying, and sequencing 54 contemporary DENV isolates, including 29 clinical samples, representing a variety of genotypes of epidemiological importance and global presence. All specimens were sequenced successfully and phylogenetic reconstructions resulted in the expected genotype classification. To further improve genomic surveillance in regions where dengue is endemic, this method was transferred to 16 public health laboratories in 13 Latin American countries, to date. Our objective is to provide an accessible method that facilitates the integration of genomics with dengue surveillance.


Assuntos
Vírus da Dengue/genética , Dengue/virologia , Técnicas de Genotipagem/métodos , Análise de Sequência de DNA/métodos , Dengue/epidemiologia , Vírus da Dengue/classificação , Genoma Viral/genética , Genótipo , Humanos , Filogenia , RNA Viral/sangue , RNA Viral/genética , Sorogrupo , Proteínas do Envelope Viral/genética
6.
J Food Prot ; 67(1): 77-82, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14717355

RESUMO

A five-strain Listeria monocytogenes culture was inoculated onto six different types of ready-to-eat (RTE) meats (frankfurters, ham, roast beef, bologna, smoked turkey with lactate, and smoked turkey without lactate). The meats were vacuum packed and stored at 4 degrees C for 24 h prior to irradiation. Populations of L. monocytogenes were recovered by surface plating on nonselective and selective media. The margins of safety studied include 3-log (3D) and 5-log (5D) reduction of pathogenic bacteria to achieve an optimal level of reduction while retaining organoleptic qualities of the meats. A 3-log reduction of L. monocytogenes was obtained at 1.5 kGy when nonselective plating medium was used. The dosages for 3-log reduction were 1.5 kGy for bologna, roast beef, and both types of turkey and 2.0 kGy for frankfurters and ham on the basis of use of selective medium. The D10-values ranged from 0.42 to 0.44 kGy. A 5-log reduction of L. monocytogenes was obtained at 2.5 kGy with nonselective medium. With selective medium, the dosages were 2.5 kGy for bologna, roast beef, and both types of turkey and 3.0 kGy for frankfurters and ham. Survival of L. monocytogenes in the same RTE meat types after irradiation was also studied. Meats were inoculated with 5 log L. monocytogenes per g and irradiated at doses of 2.0 and 4.0 kGy. Recovery of the surviving organisms was observed during storage at temperatures of 4 and 10 degrees C for 12 weeks. Preliminary results showed no growth in meats irradiated at 4.0 kGy. Survivors were observed for irradiated meats at 2.0 kGy stored at 10 degrees C after the second week. No growth was observed in samples irradiated at 2.0 kGy stored at 4 degrees C until the fifth week.


Assuntos
Irradiação de Alimentos , Conservação de Alimentos/métodos , Listeria monocytogenes/efeitos da radiação , Produtos da Carne/microbiologia , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Relação Dose-Resposta à Radiação , Microbiologia de Alimentos , Listeria monocytogenes/crescimento & desenvolvimento , Produtos da Carne/normas , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...