Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 34: 311-325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38274293

RESUMO

More effective approaches are needed in the treatment of blood cancers, in particular acute myeloid leukemia (AML), that are able to eliminate resistant leukemia stem cells (LSCs) at the bone marrow (BM), after a chemotherapy session, and then enhance hematopoietic stem cell (HSC) engraftment for the re-establishment of the HSC compartment. Here, we investigate whether light-activatable nanoparticles (NPs) encapsulating all-trans-retinoic acid (RA+NPs) could solve both problems. Our in vitro results show that mouse AML cells transfected with RA+NPs differentiate towards antitumoral M1 macrophages through RIG.1 and OASL gene expression. Our in vivo results further show that mouse AML cells transfected with RA+NPs home at the BM after transplantation in an AML mouse model. The photo-disassembly of the NPs within the grafted cells by a blue laser enables their differentiation towards a macrophage lineage. This macrophage activation seems to have systemic anti-leukemic effect within the BM, with a significant reduction of leukemic cells in all BM compartments, of animals treated with RA+NPs, when compared with animals treated with empty NPs. In a separate group of experiments, we show for the first time that normal HSCs transfected with RA+NPs show superior engraftment at the BM niche than cells without treatment or treated with empty NPs. This is the first time that the activity of RA is tested in terms of long-term hematopoietic reconstitution after transplant using an in situ activation approach without any exogenous priming or genetic conditioning of the transplanted cells. Overall, the approach documented here has the potential to improve consolidation therapy in AML since it allows a dual intervention in the BM niche: to tackle resistant leukemia and improve HSC engraftment at the same time.

2.
Methods Mol Biol ; 2747: 211-227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38038943

RESUMO

Hematopoiesis is the process through which all mature blood cells are formed and takes place in the bone marrow (BM). Acute myeloid leukemia (AML) is a blood cancer of the myeloid lineage. AML progression causes drastic remodeling of the BM microenvironment, making it no longer supportive of healthy hematopoiesis and leading to clinical cytopenia in patients. Understanding the mechanisms by which AML cells shape the BM to their benefit would lead to the development of new therapeutic strategies. While the role of extracellular matrix (ECM) in solid cancer has been extensively studied during decades, its role in the BM and in leukemia progression has only begun to be acknowledged. In this context, intravital microscopy (IVM) gives the unique insight of direct in vivo observation of AML cell behavior in their environment during disease progression and/or upon drug treatments. Here we describe our protocol for visualizing and analyzing MLL-AF9 AML cell dynamics upon systemic inhibition of matrix metalloproteinases (MMP), combining confocal and two-photon microscopy and focusing on cell migration.


Assuntos
Medula Óssea , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Metaloproteinases da Matriz , Microscopia Intravital , Movimento Celular , Microambiente Tumoral
3.
Nat Cancer ; 4(8): 1193-1209, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37550517

RESUMO

Aging facilitates the expansion of hematopoietic stem cells (HSCs) carrying clonal hematopoiesis-related somatic mutations and the development of myeloid malignancies, such as myeloproliferative neoplasms (MPNs). While cooperating mutations can cause transformation, it is unclear whether distinct bone marrow (BM) HSC-niches can influence the growth and therapy response of HSCs carrying the same oncogenic driver. Here we found different BM niches for HSCs in MPN subtypes. JAK-STAT signaling differentially regulates CDC42-dependent HSC polarity, niche interaction and mutant cell expansion. Asymmetric HSC distribution causes differential BM niche remodeling: sinusoidal dilation in polycythemia vera and endosteal niche expansion in essential thrombocythemia. MPN development accelerates in a prematurely aged BM microenvironment, suggesting that the specialized niche can modulate mutant cell expansion. Finally, dissimilar HSC-niche interactions underpin variable clinical response to JAK inhibitor. Therefore, HSC-niche interactions influence the expansion rate and therapy response of cells carrying the same clonal hematopoiesis oncogenic driver.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Idoso , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/terapia , Transtornos Mieloproliferativos/patologia , Medula Óssea/patologia , Medula Óssea/fisiologia , Células-Tronco Hematopoéticas/patologia , Osso e Ossos/patologia , Microambiente Tumoral/genética
4.
PLoS One ; 17(9): e0272587, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36099240

RESUMO

Multi-potent progenitor (MPP) cells act as a key intermediary step between haematopoietic stem cells and the entirety of the mature blood cell system. Their eventual fate determination is thought to be achieved through migration in and out of spatially distinct niches. Here we first analyze statistically MPP cell trajectory data obtained from a series of long time-course 3D in vivo imaging experiments on irradiated mouse calvaria, and report that MPPs display transient super-diffusion with apparent non-Gaussian displacement distributions. Second, we explain these experimental findings using a run-and-tumble model of cell motion which incorporates the observed dynamical heterogeneity of the MPPs. Third, we use our model to extrapolate the dynamics to time-periods currently inaccessible experimentally, which enables us to quantitatively estimate the time and length scales at which super-diffusion transitions to Fickian diffusion. Our work sheds light on the potential importance of motility in early haematopoietic progenitor function.


Assuntos
Células-Tronco Hematopoéticas , Animais , Difusão , Camundongos , Movimento (Física)
5.
J Clin Invest ; 128(5): 2010-2024, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29485974

RESUMO

A key predictor for the success of gene-modified T cell therapies for cancer is the persistence of transferred cells in the patient. The propensity of less differentiated memory T cells to expand and survive efficiently has therefore made them attractive candidates for clinical application. We hypothesized that redirecting T cells to specialized niches in the BM that support memory differentiation would confer increased therapeutic efficacy. We show that overexpression of chemokine receptor CXCR4 in CD8+ T cells (TCXCR4) enhanced their migration toward vascular-associated CXCL12+ cells in the BM and increased their local engraftment. Increased access of TCXCR4 to the BM microenvironment induced IL-15-dependent homeostatic expansion and promoted the differentiation of memory precursor-like cells with low expression of programmed death-1, resistance to apoptosis, and a heightened capacity to generate polyfunctional cytokine-producing effector cells. Following transfer to lymphoma-bearing mice, TCXCR4 showed a greater capacity for effector expansion and better tumor protection, the latter being independent of changes in trafficking to the tumor bed or local out-competition of regulatory T cells. Thus, redirected homing of T cells to the BM confers increased memory differentiation and antitumor immunity, suggesting an innovative solution to increase the persistence and functions of therapeutic T cells.


Assuntos
Medula Óssea/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Movimento Celular/imunologia , Memória Imunológica , Neoplasias/imunologia , Linfócitos T Reguladores/imunologia , Animais , Medula Óssea/patologia , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Quimiocina CXCL12/genética , Quimiocina CXCL12/imunologia , Humanos , Interleucina-15/genética , Interleucina-15/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Receptores CXCR4/genética , Receptores CXCR4/imunologia , Linfócitos T Reguladores/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...