Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 66(13): 3753-64, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25922488

RESUMO

Immunolocalization of mannans in the seeds of Brachypodium distachyon reveals the presence of these polysaccharides in the root embryo and in the coleorhiza in the early stages of germination (12h), decreasing thereafter to the point of being hardly detected at 27h. Concurrently, the activity of endo-ß-mannanases (MANs; EC 3.2.1.78) that catalyse the hydrolysis of ß-1,4 bonds in mannan polymers, increases as germination progresses. The MAN gene family is represented by six members in the Brachypodium genome, and their expression has been explored in different organs and especially in germinating seeds. Transcripts of BdMAN2, BdMAN4 and BdMAN6 accumulate in embryos, with a maximum at 24-30h, and are detected in the coleorhiza and in the root by in situ hybridization analyses, before root protrusion (germination sensu stricto). BdMAN4 is not only present in the embryo root and coleorhiza, but is abundant in the de-embryonated (endosperm) imbibed seeds, while BdMAN2 and BdMAN6 are faintly expressed in endosperm during post-germination (36-42h). BdMAN4 and BdMAN6 transcripts are detected in the aleurone layer. These data indicate that BdMAN2, BdMAN4 and BdMAN6 are important for germination sensu stricto and that BdMAN4 and BdMAN6 may also influence reserve mobilization. Whether the coleorhiza in monocots and the micropylar endosperm in eudicots have similar functions, is discussed.


Assuntos
Brachypodium/genética , Perfilação da Expressão Gênica , Genes de Plantas , Germinação , Mananas/metabolismo , Sementes/genética , beta-Manosidase/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Brachypodium/enzimologia , Sequência Conservada , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Hibridização In Situ , Cinética , Meristema/metabolismo , Dados de Sequência Molecular , Família Multigênica , Especificidade de Órgãos/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/embriologia , beta-Manosidase/química , beta-Manosidase/genética
2.
Planta ; 240(3): 539-52, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24957701

RESUMO

MAIN CONCLUSION: BdDOF24 interacting with BdGAMYB regulates the BdCathB gene upon germination. During barley seed germination, hydrolytic enzymes (α-amylases, proteases, etc.) synthesized in the aleurone layer in response to gibberellins (GA), catalyse the mobilization of storage reserves accumulated in the endosperm during seed maturation. In Brachypodium distachyon, the BdCathB gene that encodes a Cathepsin B-like thiol-protease, orthologous to the wheat Al21 and barley HvCathB, is highly induced in germinating seeds and its expression is regulated by transcription factors (TFs) encoded by genes BdGamyb and BdDof24, orthologous to the barley HvGamyb and BPBF-HvDof24, respectively. Transcripts of both TF genes increase during germination and treatments with abscisic acid (ABA) or paclobutrazol (PAC, an inhibitor of GA biosynthesis) decrease mRNA expression of BdGamyb but do not affect that of BdDof24. Besides, proteins BdDOF24 and BdGAMYB interact in yeast-2 hybrid systems and in plant nuclei, and in transient expression assays in aleurone layers BdDOF24 is a transcriptional repressor and BdGAMYB is an activator of the BdCathB promoter, as occurs with the putative orthologous in barley BPBF-HvDOF24 and HvGAMYB. However, when both TFs are co-bombarded, BdDOF24 enhances the activation driven by BdGAMYB while BPBF-HvDOF24 strongly decreases the HvGAMYB-mediated activation of the BdCathB promoter. The different results obtained when BdDOF24 and BPBF-HvDOF24 interact with BdGAMYB and HvGAMYB are discussed.


Assuntos
Brachypodium/metabolismo , Catepsina B/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Proteínas de Plantas/metabolismo , Ácido Abscísico , Brachypodium/genética , Catepsina B/genética , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triazóis , Técnicas do Sistema de Duplo-Híbrido
3.
BMC Plant Biol ; 12: 202, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23126376

RESUMO

BACKGROUND: Transcription factors (TFs) are proteins that have played a central role both in evolution and in domestication, and are major regulators of development in living organisms. Plant genome sequences reveal that approximately 7% of all genes encode putative TFs. The DOF (DNA binding with One Finger) TF family has been associated with vital processes exclusive to higher plants and to their close ancestors (algae, mosses and ferns). These are seed maturation and germination, light-mediated regulation, phytohormone and plant responses to biotic and abiotic stresses, etc. In Hordeum vulgare and Oryza sativa, 26 and 30 different Dof genes, respectively, have been annotated. Brachypodium distachyon has been the first Pooideae grass to be sequenced and, due to its genomic, morphological and physiological characteristics, has emerged as the model system for temperate cereals, such as wheat and barley. RESULTS: Through searches in the B. distachyon genome, 27 Dof genes have been identified and a phylogenetic comparison with the Oryza sativa and the Hordeum vulgare DOFs has been performed. To explore the evolutionary relationship among these DOF proteins, a combined phylogenetic tree has been constructed with the Brachypodium DOFs and those from rice and barley. This phylogenetic analysis has classified the DOF proteins into four Major Cluster of Orthologous Groups (MCOGs). Using RT-qPCR analysis the expression profiles of the annotated BdDof genes across four organs (leaves, roots, spikes and seeds) has been investigated. These results have led to a classification of the BdDof genes into two groups, according to their expression levels. The genes highly or preferentially expressed in seeds have been subjected to a more detailed expression analysis (maturation, dry stage and germination). CONCLUSIONS: Comparison of the expression profiles of the Brachypodium Dof genes with the published functions of closely related DOF sequences from the cereal species considered here, deduced from the phylogenetic analysis, indicates that although the expression profile has been conserved in many of the putative orthologs, in some cases duplication followed by subsequent divergence may have occurred (neo-functionalization).


Assuntos
Brachypodium/genética , Filogenia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência Conservada , Genoma de Planta , Germinação/genética , Hordeum/genética , Dados de Sequência Molecular , Oryza/genética , Proteínas de Plantas/classificação , RNA de Plantas/genética , Sementes/genética , Alinhamento de Sequência , Fatores de Transcrição/classificação , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...