Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cells ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36497079

RESUMO

The activation of the maternal immune system by a prenatal infection is considered a risk factor for developing psychiatric disorders in the offspring. Toxoplasma gondii is one of the pathogenic infections associated with schizophrenia. Recent studies have shown an association between high levels of IgG anti-T. gondii from mothers and their neonates, with a higher risk of developing schizophrenia. The absence of the parasite and the levels of IgGs found in the early stages of life suggest a transplacental transfer of the anti-T. gondii IgG antibodies, which could bind fetal brain structures by molecular mimicry and induce alterations in neurodevelopment. This study aimed to determine the maternal pathogenic antibodies formation that led to behavioral impairment on the progeny of rats immunized with T. gondii. Female rats were immunized prior to gestation with T. gondii lysate (3 times/once per week). The anti-T. gondii IgG levels were determined in the serum of pregestational exposed females' previous mating. After this, locomotor activity, cognitive and social tests were performed. Cortical neurotransmitter levels for dopamine and glutamate were evaluated at 60 PND in the progeny of rats immunized before gestation (Pregestational group). The maternal pathogenic antibodies were evidenced by their binding to fetal brain mimotopes in the Pregestational group and the reactivity of the serum containing anti-T. gondii IgG was tested in control fetal brains (non-immunized). These results showed that the Pregestational group presented impairment in short and long-term memory, hypoactivity and alteration in social behavior, which was also associated with a decrease in cortical glutamate and dopamine levels. We also found the IgG antibodies bound to brain mimotopes in fetuses from females immunized with T. gondii, as well as observing a strong reactivity of the serum females immunized for fetal brain structures of fetuses from unimmunized mothers. Our results suggest that the exposure to T. gondii before gestation produced maternal pathogenic antibodies that can recognize fetal brain mimotopes and lead to neurochemical and behavioral alterations in the offspring.


Assuntos
Dopamina , Toxoplasma , Gravidez , Animais , Feminino , Ratos , Ácido Glutâmico , Imunoglobulina G , Encéfalo
2.
Vaccines (Basel) ; 9(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34452053

RESUMO

The Receptor-Binding Domain (RBD) of the Spike (S) protein from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has glycosylation sites which can limit the production of reliable antigens expressed in prokaryotic platforms, due to glycan-mediated evasion of the host immune response. However, protein regions without glycosylated residues capable of inducing neutralizing antibodies could be useful for antigen production in systems that do not carry the glycosylation machinery. To test this hypothesis, the potential antigens NG06 and NG19, located within the non-glycosylated S-RBD region, were selected and expressed in Escherichia coli, purified by FPLC and employed to determine their immunogenic potential through detection of antibodies in serum from immunized rabbits, mice, and COVID-19 patients. IgG antibodies from sera of COVID-19-recovered patients detected the recombinant antigens NG06 and NG19 (A450 nm = 0.80 ± 0.33; 1.13 ± 0.33; and 0.11 ± 0.08 for and negatives controls, respectively). Also, the purified antigens were able to raise polyclonal antibodies in animal models evoking a strong immune response with neutralizing activity in mice model. This research highlights the usefulness of antigens based on the non-N-glycosylated region of RBD from SARS-CoV-2 for candidate vaccine development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...