Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(17): 171902, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37955498

RESUMO

Treating the infinite-dimensional Hilbert space of non-Abelian gauge theories is an outstanding challenge for classical and quantum simulations. Here, we employ q-deformed Kogut-Susskind lattice gauge theories, obtained by deforming the defining symmetry algebra to a quantum group. In contrast to other formulations, this approach simultaneously provides a controlled regularization of the infinite-dimensional local Hilbert space while preserving essential symmetry-related properties. This enables the development of both quantum as well as quantum-inspired classical spin-network algorithms for q-deformed gauge theories. To be explicit, we focus on SU(2)_{k} gauge theories with k∈N that are controlled by the deformation parameter q=e^{2πi/(k+2)}, a root of unity, and converge to the standard SU(2) Kogut-Susskind model as k→∞. In particular, we demonstrate that this formulation is well suited for efficient tensor network representations by variational ground-state simulations in 2D, providing first evidence that the continuum limit can be reached with k=O(10). Finally, we develop a scalable quantum algorithm for Trotterized real-time evolution by analytically diagonalizing the SU(2)_{k} plaquette interactions. Our work gives a new perspective for the application of tensor network methods to high-energy physics and paves the way for quantum simulations of non-Abelian gauge theories far from equilibrium where no other methods are currently available.

2.
Phys Rev Lett ; 131(26): 263001, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38215379

RESUMO

In this work, we investigate a two-dimensional system of ultracold bosonic atoms inside an optical cavity, and show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state. The latter corresponds to a 2D Peierls transition, generalizing the spontaneous bond dimerization driven by phonon-electron interactions in the 1D Su-Schrieffer-Heeger (SSH) model. Here the bosonic nature of the atoms plays a crucial role to generate the phase, as similar generalizations with fermionic matter do not lead to a plaquette structure. Similar to the SSH model, we show how this pattern opens a nontrivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states, that we characterize by means of a many-body topological invariant and through its entanglement structure. Finally, we demonstrate how this higher-order topological Peierls insulator can be readily prepared in atomic experiments through adiabatic protocols. Our work thus shows how atomic quantum simulators can be harnessed to investigate novel strongly correlated topological phenomena beyond those observed in natural materials.

3.
ACS Omega ; 7(50): 47424-47430, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570179

RESUMO

We propose a protocol to detect topological phase transitions of one-dimensional p-wave superconductors from their harmonic emission spectra in strong fields. Specifically, we identify spectral features due to radiating edge modes, which characterize the spectrum and the density of states in the topological phase and are absent in the trivial phase. These features allow us to define a measurable signature, obtained from emission measurements, that unambiguously differentiates between the two phases. Local probing provides insight into the localized and topologically protected nature of the modes. The presented results establish that high-harmonic spectroscopy can be used as an all-optical tool for the detection of Majorana zero modes.

4.
Phys Rev Lett ; 129(16): 160501, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36306768

RESUMO

Non-Abelian gauge theories underlie our understanding of fundamental forces in nature, and developing tailored quantum hardware and algorithms to simulate them is an outstanding challenge in the rapidly evolving field of quantum simulation. Here we take an approach where gauge fields, discretized in spacetime, are represented by qudits and are time evolved in Trotter steps with multiqudit quantum gates. This maps naturally and hardware efficiently to an architecture based on Rydberg tweezer arrays, where long-lived internal atomic states represent qudits, and the required quantum gates are performed as holonomic operations supported by a Rydberg blockade mechanism. We illustrate our proposal for a minimal digitization of SU(2) gauge fields, demonstrating a significant reduction in circuit depth and gate errors in comparison to a traditional qubit-based approach, which puts simulations of non-Abelian gauge theories within reach of NISQ devices.

5.
Phys Rev Lett ; 129(8): 083401, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36053702

RESUMO

Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior. Fermionic atoms in ultracold atomic mixtures can act as mediators, giving rise to long-range Ruderman-Kittel-Kasuya-Yosida-type interactions characterized by the dimensionality and density of the fermionic gas. Here, we propose several tuning knobs, accessible in current experimental platforms, that allow one to further control the range and shape of the mediated interactions, extending the existing quantum simulation toolbox. In particular, we include an additional optical lattice for the fermionic mediator, as well as anisotropic traps to change its dimensionality in a continuous manner. This allows us to interpolate between power-law and exponential decays, introducing an effective cutoff for the interaction range, as well as to tune the relative interaction strengths at different distances. Finally, we show how our approach allows one to investigate frustrated regimes that were not previously accessible, where symmetry-protected topological phases as well as chiral spin liquids emerge.

6.
Phys Rev Lett ; 128(4): 043402, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148131

RESUMO

The combination of topology and quantum criticality can give rise to an exotic mix of counterintuitive effects. Here, we show that unexpected topological properties take place in a paradigmatic strongly correlated Hamiltonian: the 1D extended Bose-Hubbard model. In particular, we reveal the presence of two distinct topological quantum critical points with localized edge states and gapless bulk excitations. Our results show that the topological critical points separate two phases, one topologically protected and the other topologically trivial, both characterized by a long-range ordered string correlation function. The long-range order persists also at the topological critical points and explains the presence of localized edge states protected by a finite charge gap. Finally, we introduce a superresolution quantum gas microscopy scheme for dipolar dysprosium atoms, which provides a reliable route towards the experimental study of topological quantum critical points.

7.
Philos Trans A Math Phys Eng Sci ; 380(2216): 20210064, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34923836

RESUMO

The central idea of this review is to consider quantum field theory models relevant for particle physics and replace the fermionic matter in these models by a bosonic one. This is mostly motivated by the fact that bosons are more 'accessible' and easier to manipulate for experimentalists, but this 'substitution' also leads to new physics and novel phenomena. It allows us to gain new information about among other things confinement and the dynamics of the deconfinement transition. We will thus consider bosons in dynamical lattices corresponding to the bosonic Schwinger or [Formula: see text] Bose-Hubbard models. Another central idea of this review concerns atomic simulators of paradigmatic models of particle physics theory such as the Creutz-Hubbard ladder, or Gross-Neveu-Wilson and Wilson-Hubbard models. This article is not a general review of the rapidly growing field-it reviews activities related to quantum simulations for lattice field theories performed by the Quantum Optics Theory group at ICFO and their collaborators from 19 institutions all over the world. Finally, we will briefly describe our efforts to design experimentally friendly simulators of these and other models relevant for particle physics. This article is part of the theme issue 'Quantum technologies in particle physics'.

8.
Nat Commun ; 10(1): 2694, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217460

RESUMO

The dual role played by symmetry in many-body physics manifests itself through two fundamental mechanisms: spontaneous symmetry breaking and topological symmetry protection. These two concepts, ubiquitous in both condensed matter and high energy physics, have been applied successfully in the last decades to unravel a plethora of complex phenomena. Their interplay, however, remains largely unexplored. Here we report how, in the presence of strong correlations, symmetry protection emerges from a set of configurations enforced by another broken symmetry. This mechanism spawns different intertwined topological phases, where topological properties coexist with long-range order. Such a singular interplay gives rise to interesting static and dynamical effects, including interaction-induced topological phase transitions constrained by symmetry breaking, as well as a self-adjusted fractional pumping. This work paves the way for further exploration of exotic topological features in strongly-correlated quantum systems.

9.
Phys Rev Lett ; 121(9): 090402, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30230886

RESUMO

We study a one-dimensional system of strongly correlated bosons on a dynamical lattice. To this end, we extend the standard Bose-Hubbard Hamiltonian to include extra degrees of freedom on the bonds of the lattice. We show that this minimal model exhibits phenomena reminiscent of fermion-phonon models. In particular, we discover a bosonic analog of the Peierls transition, where the translational symmetry of the underlying lattice is spontaneously broken. This provides a dynamical mechanism to obtain a topological insulator in the presence of interactions, analogous to the Su-Schrieffer-Heeger model for electrons. We characterize the phase diagram numerically, showing different types of bond order waves and topological solitons. Finally, we study the possibility of implementing the model using atomic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...