Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 20573, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663862

RESUMO

Megalopas of 15 brachyuran crab species collected in the open sea plankton, and unknown until now, were identified using DNA barcodes (COI and 16S rRNA). Specimens belonging to the families Portunidae, Pseudorhombilidae and Xanthidae (Crustacea, Decapoda, Brachyura), and corresponding to the species Achelous floridanus, Arenaeus mexicanus, Callinectes amnicola, C. arcuatus, C. ornatus, C. toxones, Charybdis (Charybdis) hellerii, Portunus hastatus, Thalamita admete, Scopolius nuttingi, Etisus odhneri, Liomera cinctimanus, Neoliomera cerasinus, Pseudoliomera variolosa, and Williamstimpsonia stimpsoni, are described and illustrated, and compared with other congeneric species previously described. We also provide a new geographical record for N. cerasinus and the most remarkable features for each species.


Assuntos
Braquiúros/genética , Código de Barras de DNA Taxonômico/métodos , Animais , DNA/genética , Larva , Filogenia , Plâncton , RNA Ribossômico 16S/genética , Especificidade da Espécie
2.
Nat Commun ; 9(1): 142, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321528

RESUMO

Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size play in determining spatial patterns of diversity remains unclear. Here we analyse spatial community structure - ß-diversity - for several planktonic and nektonic organisms from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. ß-diversity was compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger species spatial turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.


Assuntos
Peixes , Oceanos e Mares , Fitoplâncton , Zooplâncton , Animais , Biodiversidade , Tamanho Corporal , Plâncton , População
3.
Sci Adv ; 3(4): e1600582, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28439534

RESUMO

The subtropical ocean gyres are recognized as great marine accummulation zones of floating plastic debris; however, the possibility of plastic accumulation at polar latitudes has been overlooked because of the lack of nearby pollution sources. In the present study, the Arctic Ocean was extensively sampled for floating plastic debris from the Tara Oceans circumpolar expedition. Although plastic debris was scarce or absent in most of the Arctic waters, it reached high concentrations (hundreds of thousands of pieces per square kilometer) in the northernmost and easternmost areas of the Greenland and Barents seas. The fragmentation and typology of the plastic suggested an abundant presence of aged debris that originated from distant sources. This hypothesis was corroborated by the relatively high ratios of marine surface plastic to local pollution sources. Surface circulation models and field data showed that the poleward branch of the Thermohaline Circulation transfers floating debris from the North Atlantic to the Greenland and Barents seas, which would be a dead end for this plastic conveyor belt. Given the limited surface transport of the plastic that accumulated here and the mechanisms acting for the downward transport, the seafloor beneath this Arctic sector is hypothesized as an important sink of plastic debris.

4.
PLoS One ; 10(4): e0121762, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25831129

RESUMO

Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.


Assuntos
Plásticos/química , Poluição da Água , Humanos , Mar Mediterrâneo , Tamanho da Partícula , Resíduos
5.
Proc Natl Acad Sci U S A ; 111(28): 10239-44, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24982135

RESUMO

There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.


Assuntos
Oceanos e Mares , Plásticos/efeitos adversos , Poluentes da Água/efeitos adversos , Poluição da Água/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...