Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720062

RESUMO

The spatial distribution of cell surface proteins governs vital processes of the immune system such as intercellular communication and mobility. However, fluorescence microscopy has limited scalability in the multiplexing and throughput needed to drive spatial proteomics discoveries at subcellular level. We present Molecular Pixelation (MPX), an optics-free, DNA sequence-based method for spatial proteomics of single cells using antibody-oligonucleotide conjugates (AOCs) and DNA-based, nanometer-sized molecular pixels. The relative locations of AOCs are inferred by sequentially associating them into local neighborhoods using the sequence-unique DNA pixels, forming >1,000 spatially connected zones per cell in 3D. For each single cell, DNA-sequencing reads are computationally arranged into spatial proteomics networks for 76 proteins. By studying immune cell dynamics using spatial statistics on graph representations of the data, we identify known and new patterns of spatial organization of proteins on chemokine-stimulated T cells, highlighting the potential of MPX in defining cell states by the spatial arrangement of proteins.

2.
Commun Biol ; 5(1): 1057, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195702

RESUMO

Male and female offspring of obese mothers are known to differ extensively in their metabolic adaptation and later development of complications. We investigate the sex-dependent responses in obese offspring mice with maternal obesity, focusing on changes in liver glucose and lipid metabolism. Here we show that maternal obesity prior to and during gestation leads to hepatic steatosis and inflammation in male offspring, while female offspring are protected. Females from obese mothers display important changes in hepatic transcriptional activity and triglycerides profile which may prevent the damaging effects of maternal obesity compared to males. These differences are sustained later in life, resulting in a better metabolic balance in female offspring. In conclusion, sex and maternal obesity drive differently transcriptional and posttranscriptional regulation of major metabolic processes in offspring liver, explaining the sexual dimorphism in obesity-associated metabolic risk.


Assuntos
Obesidade Materna , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Mães , Obesidade/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Triglicerídeos/metabolismo
3.
Int J Obes (Lond) ; 46(4): 831-842, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34997206

RESUMO

OBJECTIVE: The prevalence of overweight and obesity among children has drastically increased during the last decades and maternal obesity has been demonstrated as one of the ultimate factors. Nutrition-stimulated transgenerational regulation of key metabolic genes is fundamental to the developmental origins of the metabolic syndrome. Fetal nutrition may differently influence female and male offspring. METHODS: Mice dam were fed either a control diet or a high-fat diet (HFD) for 6-week prior mating and continued their respective diet during gestation and lactation. At weaning, female and male offspring were fed the HFD until sacrifice. White (WAT) and brown (BAT) adipose tissues were investigated in vivo by nuclear magnetic resonance at two different timepoints in life (midterm and endterm) and tissues were collected at endterm for lipidomic analysis and RNA sequencing. We explored the sex-dependent metabolic adaptation and gene programming changes by maternal HFD in visceral AT (VAT), subcutaneous AT (SAT) and BAT of offspring. RESULTS: We show that the triglyceride profile varies between adipose depots, sexes and maternal diet. In female offspring, maternal HFD remodels the triglycerides profile in SAT and BAT, and increases thermogenesis and cell differentiation in BAT, which may prevent metabolic complication later in life. Male offspring exhibit whitening of BAT and hyperplasia in VAT when born from high-fat mothers, with impaired metabolic profile. Maternal HFD differentially programs gene expression in WAT and BAT of female and male offspring. CONCLUSION: Maternal HFD modulates metabolic profile in offspring in a sex-dependent manner. A sex- and maternal diet-dependent gene programming exists in VAT, SAT, and BAT which may be key player in the sexual dimorphism in the metabolic adaptation later in life.


Assuntos
Tecido Adiposo Marrom , Lipidômica , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica , Feminino , Humanos , Masculino , Camundongos , Gravidez , Termogênese , Transcriptoma/genética
4.
Commun Biol ; 4(1): 14, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398027

RESUMO

With the increasing prevalence of obesity in women of reproductive age, there is an urgent need to understand the metabolic impact on the fetus. Sex-related susceptibility to liver diseases has been demonstrated but the underlying mechanism remains unclear. Here we report that maternal obesity impacts lipid metabolism differently in female and male offspring. Males, but not females, gained more weight and had impaired insulin sensitivity when born from obese mothers compared to control. Although lipid mass was similar in the livers of female and male offspring, sex-specific modifications in the composition of fatty acids, triglycerides and phospholipids was observed. These overall changes could be linked to sex-specific regulation of genes controlling metabolic pathways. Our findings revised the current assumption that sex-dependent susceptibility to metabolic disorders is caused by sex-specific postnatal regulation and instead we provide molecular evidence supporting in utero metabolic adaptations in the offspring of obese mothers.


Assuntos
Metabolismo dos Lipídeos , Fígado/metabolismo , Obesidade , Complicações na Gravidez , Efeitos Tardios da Exposição Pré-Natal , Adaptação Fisiológica , Animais , Feminino , Lipidômica , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Gravidez , Caracteres Sexuais
5.
Mol Cell Endocrinol ; 502: 110672, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31811898

RESUMO

Estrogen exerts its action through the binding to two major receptors, estrogen receptor (ER)α and ß. Recently, the beneficial role of selective ERß activation in the regulation of metabolic homeostasis in obesity has been demonstrated, but its importance is still controversial. However, no data are available regarding possible gender differences in response to pharmaceutical activation of ERß. Male mice were fed a control diet (CD) or a high fat diet (HFD) before being treated with the ERß selective ligand, 4-(2-(3-5-dimethylisoxazol-4-yl)-1H-indol-3yl)phenol (DIP) in the same conditions as in our recently published paper in female mice. Magnetic resonance imaging and spectroscopy were performed repeatedly in vivo after 6 weeks of diet and after 2 weeks of DIP. Adipose tissue distribution and hepatic triglycerides composition were quantified. HFD-treated males showed a feminization of their fat distribution towards more subcutaneous fat depots and increase total fat content and visceral adipose tissue showed clear browning sites after DIP. Hepatic lipid composition was modified by DIP, with less saturated and more unsaturated lipids and an improved insulin sensitivity. Finally, brown adipose tissue size expended after DIP, due to an increase of the size of the lipid droplets. Our data demonstrate that selective activation of ERß exerts a tissue-specific and sex-dependent response to metabolic adaptation to overfeeding. Most importantly, together with our previously published results in females, the current findings support the concept that sex should be considered in the future development of obesity-moderating drugs.


Assuntos
Receptor beta de Estrogênio/metabolismo , Obesidade/metabolismo , Fenóis/farmacologia , Triglicerídeos/metabolismo , Gordura Abdominal/metabolismo , Animais , Estudos de Casos e Controles , Dieta Hiperlipídica , Feminino , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Obesos , Obesidade/induzido quimicamente , Caracteres Sexuais , Gordura Subcutânea/metabolismo , Distribuição Tecidual
6.
Biol Sex Differ ; 10(1): 11, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808418

RESUMO

The response to overfeeding is sex dependent, and metabolic syndrome is more likely associated to obesity in men or postmenopausal women than in young fertile women. We hypothesized that obesity-induced metabolic syndrome is sex dependent due to a sex-specific regulation of the fatty acid (FA) synthesis pathways in liver and white adipose depots. We aimed to identify distinctive molecular signatures between sexes using a lipidomics approach to characterize lipid species in liver, perigonadal adipose tissue, and inguinal adipose tissue and correlate them to the physiopathological responses observed. Males had less total fat but lower subcutaneous on visceral fat ratio together with higher liver weight and higher liver and serum triglyceride (TG) levels. Males were insulin resistant compared to females. Fatty acid (FA) and TG profiles differed between sexes in both fat pads, with longer chain FAs and TGs in males compared to that in females. Remarkably, hepatic phospholipid composition was sex dependent with more abundant lipotoxic FAs in males than in females. This may contribute to the sexual dimorphism in response to obesity towards more metaflammation in males. Our work presents an exhaustive novel description of a sex-specific lipid signature in the pathophysiology of metabolic disorders associated with obesity in ob/ob mice. These data could settle the basis for future pharmacological treatment in obesity.


Assuntos
Tecido Adiposo/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Caracteres Sexuais , Animais , Feminino , Metabolismo dos Lipídeos , Lipidômica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos
7.
Mol Cell Endocrinol ; 479: 147-158, 2019 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-30342056

RESUMO

OBJECTIVE: Estrogens play a key role in the distribution of adipose tissue and have their action by binding to both estrogen receptors (ER), α and ß. Although ERß has a role in the energy metabolism, limited data of the physiological mechanism and metabolic response involved in the pharmacological activation of ERß is available. METHODS: For clinical relevance, non-ovariectomized female mice were subjected to high fat diet together with pharmacological (DIP - 4-(2-(3,5-dimethylisoxazol-4-yl)-1H-indol-3-yl)phenol) interventions to ERß selective activation. The physiological mechanism was assessed in vivo by magnetic resonance imaging and spectroscopy, and oral glucose and intraperitoneal insulin tolerance test before and after DIP treatment. Liver and adipose tissue metabolic response was measured in HFD + vehicle and HFD + DIP by stable isotope, RNA sequencing and protein content. RESULTS: HFD-fed females treated with DIP had a tissue-specific response towards ERß selective activation. The metabolic profile showed an improved fasting glucose level, insulin sensitivity and reduced liver steatosis. CONCLUSIONS: Our data demonstrate that selective activation of ERß exerts a tissue-specific activity which promotes a beneficial effect on whole body metabolic response to obesity.


Assuntos
Tecido Adiposo/metabolismo , Metabolismo Energético , Receptor beta de Estrogênio/metabolismo , Mitocôndrias/metabolismo , Obesidade/metabolismo , Biogênese de Organelas , Animais , Feminino , Perfilação da Expressão Gênica , Isoxazóis , Ligantes , Lipogênese , Lipólise , Fígado/metabolismo , Camundongos Endogâmicos C57BL
8.
J Bioenerg Biomembr ; 45(4): 319-31, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23271420

RESUMO

Mitochondria are dynamic structures for which fusion and fission are well characterized for rapidly dividing cells in culture. Based on these data, it has recently been proposed that high respiratory activity is the result of fusion and formation of mitochondrial reticulum, while fission results in fragmented mitochondria with low respiratory activity. In this work we test the validity of this new hypothesis by analyzing our own experimental data obtained in studies of isolated heart mitochondria, permeabilized cells of cardiac phenotype with different mitochondrial arrangement and dynamics. Additionally, we reviewed published data including electron tomographic investigation of mitochondrial membrane-associated structures in heart cells. Oxygraphic studies show that maximal ADP-dependent respiration rates are equally high both in isolated heart mitochondria and in permeabilized cardiomyocytes. On the contrary, these rates are three times lower in NB HL-1 cells with fused mitochondrial reticulum. Confocal and electron tomographic studies show that there is no mitochondrial reticulum in cardiac cells, known to contain 5,000-10,000 individual, single mitochondria, which are regularly arranged at the level of sarcomeres and are at Z-lines separated from each other by membrane structures, including the T-tubular system in close connection to the sarcoplasmic reticulum. The new structural data in the literature show a principal role for the elaborated T-tubular system in organization of cell metabolism by supplying calcium, oxygen and substrates from the extracellular medium into local domains of the cardiac cells for calcium cycling within Calcium Release Units, associated with respiration and its regulation in Intracellular Energetic Units.


Assuntos
Respiração Celular/fisiologia , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Cálcio/metabolismo , Metabolismo Energético , Microscopia Confocal , Dinâmica Mitocondrial , Miócitos Cardíacos/citologia
9.
Biochim Biophys Acta ; 1818(6): 1545-54, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22244843

RESUMO

This review describes the recent experimental data on the importance of the VDAC-cytoskeleton interactions in determining the mechanisms of energy and metabolite transfer between mitochondria and cytoplasm in cardiac cells. In the intermembrane space mitochondrial creatine kinase connects VDAC with adenine nucleotide translocase and ATP synthase complex, on the cytoplasmic side VDAC is linked to cytoskeletal proteins. Applying immunofluorescent imaging and Western blot analysis we have shown that ß2-tubulin coexpressed with mitochondria is highly important for cardiac muscle cells mitochondrial metabolism. Since it has been shown by Rostovtseva et al. that αß-heterodimer of tubulin binds to VDAC and decreases its permeability, we suppose that the ß-tubulin subunit is bound on the cytoplasmic side and α-tubulin C-terminal tail is inserted into VDAC. Other cytoskeletal proteins, such as plectin and desmin may be involved in this process. The result of VDAC-cytoskeletal interactions is selective restriction of the channel permeability for adenine nucleotides but not for creatine or phosphocreatine that favors energy transfer via the phosphocreatine pathway. In some types of cancer cells these interactions are altered favoring the hexokinase binding and thus explaining the Warburg effect of increased glycolytic lactate production in these cells. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.


Assuntos
Creatina Quinase Mitocondrial/metabolismo , Citoesqueleto/metabolismo , Mitocôndrias/metabolismo , Células Musculares/citologia , Células Musculares/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Animais , Respiração Celular , Humanos , Mitocôndrias/enzimologia , Ligação Proteica
10.
J Mol Cell Cardiol ; 52(2): 437-47, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21846472

RESUMO

The aim of this study was to investigate the possible role of tubulin ßII, a cytoskeletal protein, in regulation of mitochondrial oxidative phosphorylation and energy fluxes in heart cells. This isotype of tubulin is closely associated with mitochondria and co-expressed with mitochondrial creatine kinase (MtCK). It can be rapidly removed by mild proteolytic treatment of permeabilized cardiomyocytes in the absence of stimulatory effect of cytochrome c, that demonstrating the intactness of the outer mitochondrial membrane. Contrary to isolated mitochondria, in permeabilized cardiomyocytes (in situ mitochondria) the addition of pyruvate kinase (PK) and phosphoenolpyruvate (PEP) in the presence of creatine had no effect on the rate of respiration controlled by activated MtCK, showing limited permeability of voltage-dependent anion channel (VDAC) in mitochondrial outer membrane (MOM) for ADP regenerated by MtCK. Under normal conditions, this effect can be considered as one of the most sensitive tests of the intactness of cardiomyocytes and controlled permeability of MOM for adenine nucleotides. However, proteolytic treatment of permeabilized cardiomyocytes with trypsin, by removing mitochondrial ßII tubulin, induces high sensitivity of MtCK-regulated respiration to PK-PEP, significantly changes its kinetics and the affinity to exogenous ADP. MtCK coupled to ATP synthasome and to VDAC controlled by tubulin ßII provides functional compartmentation of ATP in mitochondria and energy channeling into cytoplasm via phosphotransfer network. Therefore, direct transfer of mitochondrially produced ATP to sites of its utilization is largely avoided under physiological conditions, but may occur in pathology when mitochondria are damaged. This article is part of a Special Issue entitled ''Local Signaling in Myocytes''.


Assuntos
Metabolismo Energético/fisiologia , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Tubulina (Proteína)/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Respiração Celular , Creatina Quinase Mitocondrial/metabolismo , Masculino , Microscopia Confocal , Microscopia de Fluorescência , Membranas Mitocondriais/metabolismo , Consumo de Oxigênio , Transporte Proteico , Ratos , Ratos Wistar
11.
J Mol Cell Cardiol ; 52(2): 419-36, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21816155

RESUMO

This review describes developments in historical perspective as well as recent results of investigations of cellular mechanisms of regulation of energy fluxes and mitochondrial respiration by cardiac work - the metabolic aspect of the Frank-Starling law of the heart. A Systems Biology solution to this problem needs the integration of physiological and biochemical mechanisms that take into account intracellular interactions of mitochondria with other cellular systems, in particular with cytoskeleton components. Recent data show that different tubulin isotypes are involved in the regular arrangement exhibited by mitochondria and ATP-consuming systems into Intracellular Energetic Units (ICEUs). Beta II tubulin association with the mitochondrial outer membrane, when co-expressed with mitochondrial creatine kinase (MtCK) specifically limits the permeability of voltage-dependent anion channel for adenine nucleotides. In the MtCK reaction this interaction changes the regulatory kinetics of respiration through a decrease in the affinity for adenine nucleotides and an increase in the affinity for creatine. Metabolic Control Analysis of the coupled MtCK-ATP Synthasome in permeabilized cardiomyocytes showed a significant increase in flux control by steps involved in ADP recycling. Mathematical modeling of compartmentalized energy transfer represented by ICEUs shows that cyclic changes in local ADP, Pi, phosphocreatine and creatine concentrations during contraction cycle represent effective metabolic feedback signals when amplified in the coupled non-equilibrium MtCK-ATP Synthasome reactions in mitochondria. This mechanism explains the regulation of respiration on beat to beat basis during workload changes under conditions of metabolic stability. This article is part of a Special Issue entitled "Local Signaling in Myocytes."


Assuntos
Metabolismo Energético/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Permeabilidade da Membrana Celular , Citoesqueleto/metabolismo , Humanos , Espaço Intracelular/metabolismo , Mitocôndrias Cardíacas/metabolismo , Modelos Teóricos , Tubulina (Proteína)/metabolismo
12.
Biochim Biophys Acta ; 1807(4): 458-69, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21296049

RESUMO

Mitochondria-cytoskeleton interactions were analyzed in adult rat cardiomyocytes and in cancerous non-beating HL-1 cells of cardiac phenotype. We show that in adult cardiomyocytes ßII-tubulin is associated with mitochondrial outer membrane (MOM). ßI-tubulin demonstrates diffused intracellular distribution, ßIII-tubulin is colocalized with Z-lines and ßIV-tubulin forms microtubular network. HL-1 cells are characterized by the absence of ßII-tubulin, by the presence of bundles of filamentous ßIV-tubulin and diffusely distributed ßI- and ßIII-tubulins. Mitochondrial isoform of creatine kinase (MtCK), highly expressed in cardiomyocytes, is absent in HL-1 cells. Our results show that high apparent K(m) for exogenous ADP in regulation of respiration and high expression of MtCK both correlate with the expression of ßII-tubulin. The absence of ßII-tubulin isotype in isolated mitochondria and in HL-1 cells results in increased apparent affinity of oxidative phosphorylation for exogenous ADP. This observation is consistent with the assumption that the binding of ßII-tubulin to mitochondria limits ADP/ATP diffusion through voltage-dependent anion channel of MOM and thus shifts energy transfer via the phosphocreatine pathway. On the other hand, absence of both ßII-tubulin and MtCK in HL-1 cells can be associated with their more glycolysis-dependent energy metabolism which is typical for cancer cells (Warburg effect).


Assuntos
Citoesqueleto/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos
13.
J Biol Chem ; 282(28): 20657-66, 2007 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-17507381

RESUMO

Obesity is frequently associated with the consumption of high carbohydrate/fat diets leading to hyperinsulinemia. We have demonstrated that soy protein (SP) reduces hyperinsulinemia, but it is unclear by which mechanism. Thus, the purpose of the present work was to establish whether SP stimulates insulin secretion to a lower extent and/or reduces insulin resistance, and to understand its molecular mechanism of action in pancreatic islets of rats with diet-induced obesity. Long-term consumption of SP in a high fat (HF) diet significantly decreased serum glucose, free fatty acids, leptin, and the insulin:glucagon ratio compared with animals fed a casein HF diet. Hyperglycemic clamps indicated that SP stimulated insulin secretion to a lower extent despite HF consumption. Furthermore, there was lower pancreatic islet area and insulin, SREBP-1, PPARgamma, and GLUT-2 mRNA abundance in comparison with rats fed the casein HF diet. Euglycemic-hyperinsulinemic clamps showed that the SP diet prevented insulin resistance despite consumption of a HF diet. Incubation of pancreatic islets with isoflavones reduced insulin secretion and expression of PPARgamma. Addition of amino acids resembling the plasma concentration of rats fed casein stimulated insulin secretion; a response that was reduced by the presence of isoflavones, whereas the amino acid pattern resembling the plasma concentration of rats fed SP barely stimulated insulin release. Infusion of isoflavones during the hyperglycemic clamps did not stimulate insulin secretion. Therefore, isoflavones as well as the amino acid pattern seen after SP consumption stimulated insulin secretion to a lower extent, decreasing PPARgamma, GLUT-2, and SREBP-1 expression, and ameliorating hyperinsulinemia observed during obesity.


Assuntos
Aminoácidos/farmacologia , Gorduras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Hiperinsulinismo/sangue , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Isoflavonas/farmacologia , Obesidade/sangue , Proteínas de Soja/farmacologia , Animais , Glicemia/análise , Caseínas/administração & dosagem , Caseínas/efeitos adversos , Células Cultivadas , Gorduras na Dieta/efeitos adversos , Proteínas Alimentares/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Glucagon/sangue , Técnica Clamp de Glucose , Transportador de Glucose Tipo 2/biossíntese , Humanos , Hiperinsulinismo/etiologia , Hiperinsulinismo/patologia , Insulina/sangue , Resistência à Insulina , Secreção de Insulina , Ilhotas Pancreáticas/patologia , Leptina/sangue , Obesidade/complicações , Obesidade/patologia , PPAR gama/biossíntese , Ratos , Ratos Sprague-Dawley , Proteínas de Soja/efeitos adversos , Proteína de Ligação a Elemento Regulador de Esterol 1/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...