Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Physiol ; 600(6): 1357-1371, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35014034

RESUMO

Large conductance K+ channels, termed BK channels, regulate a variety of cellular and physiological functions. Although universally activated by changes in voltage or [Ca2+ ]i , the threshold for BK channel activation varies among loci of expression, often arising from cell-specific regulatory subunits including a family of leucine rich repeat-containing (LRRC) γ subunits (LRRC26, LRRC52, LRRC55 and LRRC38). The 'founding' member of this family, LRRC26, was originally identified as a tumour suppressor in various cancers. An LRRC26 knockout (KO) mouse model recently revealed that LRRC26 is also highly expressed in secretory epithelial cells and partners with BK channels in the salivary gland and colonic goblet cells to promote sustained K+ fluxes likely essential for normal secretory function. To accomplish this, LRRC26 negatively shifts the range of BK channel activation such that channels contribute to K+ flux near typical epithelial cell resting conditions. In colon, the absence of LRRC26 increases vulnerability to colitis. LRRC26-containing BK channels are also likely important regulators of epithelial function in other loci, including airways, female reproductive tract and mammary gland. Based on an LRRC52 KO mouse model, LRRC52 regulation of large conductance K+ channels plays a role both in sperm function and in cochlear inner hair cells. Although our understanding of LRRC-containing BK channels remains rudimentary, KO mouse models may help define other organs in which LRRC-containing channels support normal function. A key topic for future work concerns identification of endogenous mechanisms, whether post-translational or via gene regulation, that may impact LRRC-dependent pathologies.


Assuntos
Células Ciliadas Auditivas Internas , Canais de Potássio Ativados por Cálcio de Condutância Alta , Animais , Colo/metabolismo , Feminino , Células Ciliadas Auditivas Internas/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Domínios Proteicos
2.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431687

RESUMO

Goblet cells (GCs) are specialized cells of the intestinal epithelium contributing critically to mucosal homeostasis. One of the functions of GCs is to produce and secrete MUC2, the mucin that forms the scaffold of the intestinal mucus layer coating the epithelium and separates the luminal pathogens and commensal microbiota from the host tissues. Although a variety of ion channels and transporters are thought to impact on MUC2 secretion, the specific cellular mechanisms that regulate GC function remain incompletely understood. Previously, we demonstrated that leucine-rich repeat-containing protein 26 (LRRC26), a known regulatory subunit of the Ca2+-and voltage-activated K+ channel (BK channel), localizes specifically to secretory cells within the intestinal tract. Here, utilizing a mouse model in which MUC2 is fluorescently tagged, thereby allowing visualization of single GCs in intact colonic crypts, we show that murine colonic GCs have functional LRRC26-associated BK channels. In the absence of LRRC26, BK channels are present in GCs, but are not activated at physiological conditions. In contrast, all tested MUC2- cells completely lacked BK channels. Moreover, LRRC26-associated BK channels underlie the BK channel contribution to the resting transepithelial current across mouse distal colonic mucosa. Genetic ablation of either LRRC26 or BK pore-forming α-subunit in mice results in a dramatically enhanced susceptibility to colitis induced by dextran sodium sulfate. These results demonstrate that normal potassium flux through LRRC26-associated BK channels in GCs has protective effects against colitis in mice.


Assuntos
Colite/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Mucina-2/genética , Animais , Colite/patologia , Colite/prevenção & controle , Colite/terapia , Colo/metabolismo , Colo/patologia , Modelos Animais de Doenças , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Potenciais da Membrana/genética , Camundongos , Técnicas de Patch-Clamp
3.
Annu Rev Physiol ; 81: 113-137, 2019 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-30742788

RESUMO

Ca2+- and voltage-gated K+ channels of large conductance (BK channels) are expressed in a diverse variety of both excitable and inexcitable cells, with functional properties presumably uniquely calibrated for the cells in which they are found. Although some diversity in BK channel function, localization, and regulation apparently arises from cell-specific alternative splice variants of the single pore-forming α subunit ( KCa1.1, Kcnma1, Slo1) gene, two families of regulatory subunits, ß and γ, define BK channels that span a diverse range of functional properties. We are just beginning to unravel the cell-specific, physiological roles served by BK channels of different subunit composition.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Subunidades Proteicas/metabolismo , Animais , Cálcio/metabolismo , Humanos
4.
Proc Natl Acad Sci U S A ; 115(40): 9923-9928, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224470

RESUMO

Structural symmetry is a hallmark of homomeric ion channels. Nonobligatory regulatory proteins can also critically define the precise functional role of such channels. For instance, the pore-forming subunit of the large conductance voltage and calcium-activated potassium (BK, Slo1, or KCa1.1) channels encoded by a single KCa1.1 gene assembles in a fourfold symmetric fashion. Functional diversity arises from two families of regulatory subunits, ß and γ, which help define the range of voltages over which BK channels in a given cell are activated, thereby defining physiological roles. A BK channel can contain zero to four ß subunits per channel, with each ß subunit incrementally influencing channel gating behavior, consistent with symmetry expectations. In contrast, a γ1 subunit (or single type of γ1 subunit complex) produces a functionally all-or-none effect, but the underlying stoichiometry of γ1 assembly and function remains unknown. Here we utilize two distinct and independent methods, a Forster resonance energy transfer-based optical approach and a functional reporter in single-channel recordings, to reveal that a BK channel can contain up to four γ1 subunits, but a single γ1 subunit suffices to induce the full gating shift. This requires that the asymmetric association of a single regulatory protein can act in a highly concerted fashion to allosterically influence conformational equilibria in an otherwise symmetric K+ channel.


Assuntos
Ativação do Canal Iônico/fisiologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades Proteicas/metabolismo , Animais , Transferência Ressonante de Energia de Fluorescência/métodos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Camundongos , Subunidades Proteicas/genética , Xenopus laevis
5.
Proc Natl Acad Sci U S A ; 115(32): 8203-8208, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30038023

RESUMO

Neurons encode electrical signals with critically tuned voltage-gated ion channels and enzymes. Dedicated voltage sensor domains (VSDs) in these membrane proteins activate coordinately with an unresolved structural change. Such change conveys the transmembrane translocation of four positively charged arginine side chains, the voltage-sensing residues (VSRs; R1-R4). Countercharges and lipid phosphohead groups likely stabilize these VSRs within the low-dielectric core of the protein. However, the role of hydration, a sign-independent charge stabilizer, remains unclear. We replaced all VSRs and their neighboring residues with negatively charged aspartates in a voltage-gated potassium channel. The ensuing mild functional effects indicate that hydration is also important in VSR stabilization. The voltage dependency of the VSR aspartate variants approached the expected arithmetic summation of charges at VSR positions, as if negative and positive side chains faced similar pathways. In contrast, aspartates introduced between R2 and R3 did not affect voltage dependence as if the side chains moved outside the electric field or together with it, undergoing a large displacement and volumetric remodeling. Accordingly, VSR performed osmotic work at both internal and external aqueous interfaces. Individual VSR contributions to volumetric works approached arithmetical additivity but were largely dissimilar. While R1 and R4 displaced small volumes, R2 and R3 volumetric works were massive and vectorially opposed, favoring large aqueous remodeling during VSD activation. These diverse volumetric works are, at least for R2 and R3, not compatible with VSR translocation across a unique stationary charge transfer center. Instead, VSRs may follow separated pathways across a fluctuating low-dielectric septum.


Assuntos
Ácido Aspártico/química , Ativação do Canal Iônico , Domínios Proteicos , Superfamília Shaker de Canais de Potássio/química , Potenciais de Ação , Sequência de Aminoácidos/genética , Animais , Arginina/química , Arginina/genética , Arginina/metabolismo , Ácido Aspártico/genética , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Oócitos , Osmose , Técnicas de Patch-Clamp , Superfamília Shaker de Canais de Potássio/genética , Eletricidade Estática , Água/química , Xenopus
6.
Proc Natl Acad Sci U S A ; 114(18): E3739-E3747, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28416688

RESUMO

Leucine-rich-repeat-containing protein 26 (LRRC26) is the regulatory γ1 subunit of Ca2+- and voltage-dependent BK-type K+ channels. BK channels that contain LRRC26 subunits are active near normal resting potentials even without Ca2+, suggesting they play unique physiological roles, likely limited to very specific cell types and cellular functions. By using Lrrc26 KO mice with a ß-gal reporter, Lrrc26 promoter activity is found in secretory epithelial cells, especially acinar epithelial cells in lacrimal and salivary glands, and also goblet and Paneth cells in intestine and colon, although absent from neurons. We establish the presence of LRRC26 protein in eight secretory tissues or tissues with significant secretory epithelium and show that LRRC26 protein coassembles with the pore-forming BK α-subunit in at least three tissues: lacrimal gland, parotid gland, and colon. In lacrimal, parotid, and submandibular gland acinar cells, LRRC26 KO shifts BK gating to be like α-subunit-only BK channels. Finally, LRRC26 KO mimics the effect of SLO1/BK KO in reducing [K+] in saliva. LRRC26-containing BK channels are competent to contribute to resting K+ efflux at normal cell membrane potentials with resting cytosolic Ca2+ concentrations and likely play a critical physiological role in supporting normal secretory function in all secretory epithelial cells.


Assuntos
Colo/metabolismo , Células Epiteliais/metabolismo , Aparelho Lacrimal/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Potenciais da Membrana , Glândula Parótida/metabolismo , Animais , Cálcio/metabolismo , Colo/citologia , Células Epiteliais/citologia , Aparelho Lacrimal/citologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Camundongos , Camundongos Knockout , Glândula Parótida/citologia , Potássio/metabolismo
7.
Elife ; 42015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26559620

RESUMO

Two mammalian genes, Kcnt1 and Kcnt2, encode pore-forming subunits of Na(+)-dependent K(+) (KNa) channels. Progress in understanding KNa channels has been hampered by the absence of specific tools and methods for rigorous KNa identification in native cells. Here, we report the genetic disruption of both Kcnt1 and Kcnt2, confirm the loss of Slo2.2 and Slo2.1 protein, respectively, in KO animals, and define tissues enriched in Slo2 expression. Noting the prevalence of Slo2.2 in dorsal root ganglion, we find that KO of Slo2.2, but not Slo2.1, results in enhanced itch and pain responses. In dissociated small diameter DRG neurons, KO of Slo2.2, but not Slo2.1, abolishes KNa current. Utilizing isolectin B4+ neurons, the absence of KNa current results in an increase in action potential (AP) firing and a decrease in AP threshold. Activation of KNa acts as a brake to initiation of the first depolarization-elicited AP with no discernible effect on afterhyperpolarizations.


Assuntos
Potenciais de Ação , Gânglios Espinais/fisiologia , Técnicas de Inativação de Genes , Proteínas do Tecido Nervoso/deficiência , Neurônios/fisiologia , Canais de Potássio/deficiência , Prurido , Animais , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Dor , Canais de Potássio/metabolismo , Canais de Potássio Ativados por Sódio
8.
Nat Commun ; 6: 8341, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26388335

RESUMO

High resolution proteomics increasingly reveals that most native ion channels are assembled in macromolecular complexes. However, whether different partners have additive or cooperative functional effects, or whether some combinations of proteins may preclude assembly of others are largely unexplored topics. The large conductance Ca(2+)-and-voltage activated potassium channel (BK) is well-suited to discern nuanced differences in regulation arising from combinations of subunits. Here we examine whether assembly of two different classes of regulatory proteins, ß and γ, in BK channels is exclusive or independent. Our results show that both γ1 and up to four ß2-subunits can coexist in the same functional BK complex, with the gating shift caused by ß2-subunits largely additive with that produced by the γ1-subunit(s). The multiplicity of ß:γ combinations that can participate in a BK complex therefore allow a range of BK channels with distinct functional properties tuned by the specific stoichiometry of the contributing subunits.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Animais , Cálcio/metabolismo , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Camundongos , Oócitos/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Xenopus laevis
9.
J Gen Physiol ; 144(4): 275-95, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25267913

RESUMO

Rat and mouse adrenal medullary chromaffin cells (CCs) express an inactivating BK current. This inactivation is thought to arise from the assembly of up to four ß2 auxiliary subunits (encoded by the kcnmb2 gene) with a tetramer of pore-forming Slo1 α subunits. Although the physiological consequences of inactivation remain unclear, differences in depolarization-evoked firing among CCs have been proposed to arise from the ability of ß2 subunits to shift the range of BK channel activation. To investigate the role of BK channels containing ß2 subunits, we generated mice in which the gene encoding ß2 was deleted (ß2 knockout [KO]). Comparison of proteins from wild-type (WT) and ß2 KO mice allowed unambiguous demonstration of the presence of ß2 subunit in various tissues and its coassembly with the Slo1 α subunit. We compared current properties and cell firing properties of WT and ß2 KO CCs in slices and found that ß2 KO abolished inactivation, slowed action potential (AP) repolarization, and, during constant current injection, decreased AP firing. These results support the idea that the ß2-mediated shift of the BK channel activation range affects repetitive firing and AP properties. Unexpectedly, CCs from ß2 KO mice show an increased tendency toward spontaneous burst firing, suggesting that the particular properties of BK channels in the absence of ß2 subunits may predispose to burst firing.


Assuntos
Células Cromafins/metabolismo , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/deficiência , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Medula Suprarrenal/metabolismo , Animais , Técnicas In Vitro , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , RNA/biossíntese , RNA/genética
10.
Proc Natl Acad Sci U S A ; 111(13): 4868-73, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24639523

RESUMO

Many K(+) channels are oligomeric complexes with intrinsic structural symmetry arising from the homo-tetrameric core of their pore-forming subunits. Allosteric regulation of tetramerically symmetric proteins, whether by intrinsic sensing domains or associated auxiliary subunits, often mirrors the fourfold structural symmetry. Here, through patch-clamp recordings of channel population ensembles and also single channels, we examine regulation of the Ca(2+)- and voltage-activated large conductance Ca(2+)-activated K(+) (BK) channel by associated γ1-subunits. Through expression of differing ratios of γ1:α-subunits, the results reveal an all-or-none functional regulation of BK channels by γ-subunits: channels either exhibit a full gating shift or no shift at all. Furthermore, the γ1-induced shift exhibits a state-dependent labile behavior that recapitulates the fully shifted or unshifted behavior. The γ1-induced shift contrasts markedly to the incremental shifts in BK gating produced by 1-4 ß-subunits and adds a new layer of complexity to the mechanisms by which BK channel functional diversity is generated.


Assuntos
Proteínas de Neoplasias/metabolismo , Subunidades Proteicas/metabolismo , Regulação Alostérica , Animais , Humanos , Ativação do Canal Iônico , Camundongos , Modelos Biológicos , Fatores de Tempo , Xenopus laevis
11.
Nature ; 485(7396): 133-6, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-22522931

RESUMO

A number of functionally important actions of proteins are mediated by short, intrinsically disordered peptide segments, but the molecular interactions that allow disordered domains to mediate their effects remain a topic of active investigation. Many K+ channel proteins, after initial channel opening, show a time-dependent reduction in current flux, termed 'inactivation', which involves movement of mobile cytosolic peptide segments (approximately 20-30 residues) into a position that physically occludes ion permeation. Peptide segments that produce inactivation show little amino-acid identity and tolerate appreciable mutational substitutions without disrupting the inactivation process. Solution nuclear magnetic resonance of several isolated inactivation domains reveals substantial conformational heterogeneity with only minimal tendency to ordered structures. Channel inactivation mechanisms may therefore help us to decipher how intrinsically disordered regions mediate functional effects. Whereas many aspects of inactivation of voltage-dependent K+ channels (Kv) can be described by a simple one-step occlusion mechanism, inactivation of the voltage-dependent large-conductance Ca2+-gated K+ (BK) channel mediated by peptide segments of auxiliary ß-subunits involves two distinguishable kinetic steps. Here we show that two-step inactivation mediated by an intrinsically disordered BK ß-subunit peptide involves a stereospecific binding interaction that precedes blockade. In contrast, blocking mediated by a Shaker Kv inactivation peptide is consistent with direct, simple occlusion by a hydrophobic segment without substantial steric requirement. The results indicate that two distinct types of molecular interaction between disordered peptide segments and their binding sites produce qualitatively similar functions.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Aminoácidos/metabolismo , Animais , Ligação Competitiva , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Camundongos , Oócitos/metabolismo , Peptídeos/química , Potássio/metabolismo , Ligação Proteica , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/metabolismo , Xenopus laevis
13.
Proc Natl Acad Sci U S A ; 107(11): 5178-83, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20194763

RESUMO

Propagation of the nerve impulse relies on the extreme voltage sensitivity of Na(+) and K(+) channels. The transmembrane movement of four arginine residues, located at the fourth transmembrane segment (S4), in each of their four voltage-sensing domains is mostly responsible for the translocation of 12 to 13 e(o) across the transmembrane electric field. Inserting additional positively charged residues between the voltage-sensing arginines in S4 would, in principle, increase voltage sensitivity. Here we show that either positively or negatively charged residues added between the two most external sensing arginines of S4 decreased voltage sensitivity of a Shaker voltage-gated K(+)-channel by up to approximately 50%. The replacement of Val363 with a charged residue displaced inwardly the external boundaries of the electric field by at least 6 A, leaving the most external arginine of S4 constitutively exposed to the extracellular space and permanently excluded from the electric field. Both the physical trajectory of S4 and its electromechanical coupling to open the pore gate seemed unchanged. We propose that the separation between the first two sensing charges at resting is comparable to the thickness of the low dielectric transmembrane barrier they must cross. Thus, at most a single sensing arginine side chain could be found within the field. The conserved hydrophobic nature of the residues located between the voltage-sensing arginines in S4 may shape the electric field geometry for optimal voltage sensitivity in voltage-gated ion channels.


Assuntos
Eletricidade , Superfamília Shaker de Canais de Potássio/metabolismo , Aminoácidos/metabolismo , Animais , Ativação do Canal Iônico , Modelos Biológicos , Proteínas Mutantes/metabolismo , Mutação/genética , Estrutura Terciária de Proteína , Superfamília Shaker de Canais de Potássio/química , Eletricidade Estática , Xenopus
14.
J Gen Physiol ; 132(6): 633-50, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19029372

RESUMO

After removal of the fast N-type inactivation gate, voltage-sensitive Shaker (Shaker IR) K channels are still able to inactivate, albeit slowly, upon sustained depolarization. The classical mechanism proposed for the slow inactivation observed in cell-free membrane patches--the so called C inactivation--is a constriction of the external mouth of the channel pore that prevents K(+) ion conduction. This constriction is antagonized by the external application of the pore blocker tetraethylammonium (TEA). In contrast to C inactivation, here we show that, when recorded in whole Xenopus oocytes, slow inactivation kinetics in Shaker IR K channels is poorly dependent on external TEA but severely delayed by internal TEA. Based on the antagonism with internally or externally added TEA, we used a two-pulse protocol to show that half of the channels inactivate by way of a gate sensitive to internal TEA. Such gate had a recovery time course in the tens of milliseconds range when the interpulse voltage was -90 mV, whereas C-inactivated channels took several seconds to recover. Internal TEA also reduced gating charge conversion associated to slow inactivation, suggesting that the closing of the internal TEA-sensitive inactivation gate could be associated with a significant amount of charge exchange of this type. We interpreted our data assuming that binding of internal TEA antagonized with U-type inactivation (Klemic, K.G., G.E. Kirsch, and S.W. Jones. 2001. Biophys. J. 81:814-826). Our results are consistent with a direct steric interference of internal TEA with an internally located slow inactivation gate as a "foot in the door" mechanism, implying a significant functional overlap between the gate of the internal TEA-sensitive slow inactivation and the primary activation gate. But, because U-type inactivation is reduced by channel opening, trapping the channel in the open conformation by TEA would also yield to an allosteric delay of slow inactivation. These results provide a framework to explain why constitutively C-inactivated channels exhibit gating charge conversion, and why mutations at the internal exit of the pore, such as those associated to episodic ataxia type I in hKv1.1, cause severe changes in inactivation kinetics.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Canal de Potássio Kv1.4/efeitos dos fármacos , Canal de Potássio Kv1.4/metabolismo , Tetraetilamônio/farmacologia , Sítio Alostérico/efeitos dos fármacos , Sítio Alostérico/fisiologia , Animais , Citoplasma/metabolismo , Eletrofisiologia , Transferência de Energia/fisiologia , Feminino , Canal de Potássio Kv1.4/genética , Potenciais da Membrana , Camundongos , Oócitos , Potássio/metabolismo , Bloqueadores dos Canais de Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas/genética , Relação Estrutura-Atividade , Tetraetilamônio/metabolismo , Termodinâmica , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...