Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 104(2): e3923, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36428233

RESUMO

Plant recruitment interactions (i.e., what recruits under what) shape the composition, diversity, and structure of plant communities. Despite the huge body of knowledge on the mechanisms underlying recruitment interactions among species, we still know little about the structure of the recruitment networks emerging in ecological communities. Modeling and analyzing the community-level structure of plant recruitment interactions as a complex network can provide relevant information on ecological and evolutionary processes acting both at the species and ecosystem levels. We report a data set containing 143 plant recruitment networks in 23 countries across five continents, including temperate and tropical ecosystems. Each network identifies the species under which another species recruits. All networks report the number of recruits (i.e., individuals) per species. The data set includes >850,000 recruiting individuals involved in 118,411 paired interactions among 3318 vascular plant species across the globe. The cover of canopy species and open ground is also provided. Three sampling protocols were used: (1) The Recruitment Network (RN) protocol (106 networks) focuses on interactions among established plants ("canopy species") and plants in their early stages of recruitment ("recruit species"). A series of plots was delimited within a locality, and all the individuals recruiting and their canopy species were identified; (2) The paired Canopy-Open (pCO) protocol (26 networks) consists in locating a potential canopy plant and identifying recruiting individuals under the canopy and in a nearby open space of the same area; (3) The Georeferenced plot (GP) protocol (11 networks) consists in using information from georeferenced individual plants in large plots to infer canopy-recruit interactions. Some networks incorporate data for both herbs and woody species, whereas others focus exclusively on woody species. The location of each study site, geographical coordinates, country, locality, responsible author, sampling dates, sampling method, and life habits of both canopy and recruit species are provided. This database will allow researchers to test ecological, biogeographical, and evolutionary hypotheses related to plant recruitment interactions. There are no copyright restrictions on the data set; please cite this data paper when using these data in publications.


Assuntos
Ecossistema , Traqueófitas , Humanos , Plantas , Evolução Biológica
2.
Mol Ecol ; 30(14): 3408-3421, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33966307

RESUMO

Our knowledge of the impact of landscape fragmentation on gene flow patterns is mainly drawn from tropical and temperate ecosystems, where landscape features, such as the distance of a tree to the forest edge, drive connectivity and mating patterns. Yet, the structure of arid and semiarid plant communities - with open canopies and a scattered distribution of trees - differs greatly from those that are well-characterized in the literature. As a result, we ignore whether the documented consequences of landscape fragmentation on plant mating and gene flow patterns also hold for native plant communities in arid and semiarid regions. We investigated the relative contribution of plant traits, pollinator activity, and individual neighbourhood in explaining variation in mating and gene flow patterns of an insect-pollinated semiarid arborescent shrub, Ziziphus lotus, at three sites embedded in highly altered agriculture landscapes. We used 14 SSRs, seed paternity analyses, and individual mixed effect mating models (MEMMi) to estimate the individual mating variables and the pollen dispersal kernel at each site. Individual spatial location, flower density, and floral visitation rate explained most of the variation of mating variables. Unexpectedly, individual correlated paternity was very low and shrubs surrounded by the most degraded matrix exhibited an increased fraction of pollen immigration and a high effective number of pollen donors per mother shrub. Overall, our results reveal that an active pollinator assemblage ensures highly efficient mating, and maintains pollen-mediated gene flow and notable connectivity levels, even in highly altered landscapes, potentially halting genetic isolation within and between distant sites.


Assuntos
Ecossistema , Fluxo Gênico , Animais , Variação Genética , Genética Populacional , Insetos , Repetições de Microssatélites , Pólen/genética , Polinização
3.
Appl Plant Sci ; 4(12)2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28101436

RESUMO

PREMISE OF THE STUDY: Microsatellite primers were developed to characterize and evaluate patterns of genetic diversity and structure in the endangered Mediterranean shrub Ziziphus lotus (Rhamnaceae). METHODS AND RESULTS: Twenty microsatellite primers were developed for Z. lotus, of which 14 were polymorphic. We evaluated microsatellite polymorphism in 97 specimens from 18 Spanish and seven Moroccan populations. Between two and eight alleles were found per locus, and the average number of alleles was 5.54. Observed heterozygosity and expected heterozygosity ranged from 0.08 to 0.90 and from 0.08 to 0.82, respectively. Nine of these primers also amplified microsatellite loci in Z. jujuba. CONCLUSIONS: The microsatellite markers described here will be useful in studies on genetic variation, population genetic structure, and gene flow in the fragmented habitat of this species. These markers are a valuable resource for designing appropriate conservation measures for the species in the Mediterranean range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...