Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 10(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671188

RESUMO

Current understanding of the effects of extreme temperature on alpine evergreens is very limited for ecosystems under Mediterranean climate (characterised by a drought period in summer), despite being exceptionally biodiverse systems and highly vulnerable under a global change scenario. We thus assessed (i) seasonal change and (ii) effect of ontogeny (young vs. mature leaves) on thermal sensitivity of Erysimum scoparium, a keystone evergreen of Teide mountain (Canary Islands). Mature leaves were comparatively much more vulnerable to moderately high leaf-temperature (≥+40 and <+50 °C) than other alpine species. Lowest LT50 occurred in autumn (-9.0 ± 1.6 °C as estimated with Rfd, and -12.9 ± 1.5 °C with Fv/Fm). Remarkably, young leaves showed stronger freezing tolerance than mature leaves in spring (LT50 -10.3 ± 2.1 °C vs. -5.6 ± 0.9 °C in mature leaves, as estimated with Rfd). Our data support the use of Rfd as a sensitive parameter to diagnose temperature-related damage in the leaves of mountain plants. On a global change scenario, E. scoparium appears as a well-prepared species for late-frost events, however rather vulnerable to moderately high temperatures.

2.
Photosynth Res ; 149(1-2): 135-153, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33033976

RESUMO

In Antarctica, multiple stresses (low temperatures, drought and excessive irradiance) hamper photosynthesis even in summer. We hypothesize that controlled inactivation of PSII reaction centres, a mechanism widely studied by pioneer work of Fred Chow and co-workers, may effectively guarantee functional photosynthesis under these conditions. Thus, we analysed the energy partitioning through photosystems in response to temperature in 15 bryophyte species presenting different worldwide distributions but all growing in Livingston Island, under controlled and field conditions. We additionally tested their tolerance to desiccation and freezing and compared those with their capability for sexual reproduction in Antarctica (as a proxy to overall fitness). Under field conditions, when irradiance rules air temperature by the warming of shoots (up to 20 °C under sunny days), a predominance of sustained photoinhibition beyond dynamic heat dissipation was observed at low temperatures. Antarctic endemic and polar species showed the largest increases of photoinhibition at low temperatures. On the contrary, the variation of thermal dissipation with temperature was not linked to species distribution. Instead, maximum non-photochemical quenching at 20 °C was related (strongly and positively) with desiccation tolerance, which also correlated with fertility in Antarctica, but not with freezing tolerance. Although all the analysed species tolerated - 20 °C when dry, the tolerance to freezing in hydrated state ranged from the exceptional ability of Schistidium rivulare (that survived for 14 months at - 80 °C) to the susceptibility of Bryum pseudotriquetrum (that died after 1 day at - 20 °C unless being desiccated before freezing).


Assuntos
Adaptação Fisiológica , Briófitas/fisiologia , Temperatura Baixa/efeitos adversos , Desidratação , Congelamento/efeitos adversos , Fotossíntese/fisiologia , Luz Solar/efeitos adversos , Regiões Antárticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...