Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37112110

RESUMO

The development of composite materials with thermo-optical properties based on smart polymeric systems and nanostructures have been extensively studied. Due to the fact of its ability to self-assemble into a structure that generates a significant change in the refractive index, one of most attractive thermo-responsive polymers is poly(N-isopropylacrylamide) (PNIPAM), as well as its derivatives such as multiblock copolymers. In this work, symmetric triblock copolymers of polyacrylamide (PAM) and PNIPAM (PAMx-b-PNIPAMy-b-PAMx) with different block lengths were prepared by reversible addition-fragmentation chain-transfer polymerization (RAFT). The ABA sequence of these triblock copolymers was obtained in only two steps using a symmetrical trithiocarbonate as a transfer agent. The copolymers were combined with gold nanoparticles (AuNPs) to prepare nanocomposite materials with tunable optical properties. The results show that copolymers behave differently in solution due to the fact of variations in their composition. Therefore, they have a different impact on the nanoparticle formation process. Likewise, as expected, an increase in the length of the PNIPAM block promotes a better thermo-optical response.

2.
Front Chem ; 11: 1128859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778030

RESUMO

SARS-CoV-2 is the virus responsible for the COVID-19 pandemic. For the virus to enter the host cell, its spike (S) protein binds to the ACE2 receptor, and the transmembrane protease serine 2 (TMPRSS2) cleaves the binding for the fusion. As part of the research on COVID-19 treatments, several Casiopeina-analogs presented here were looked at as TMPRSS2 inhibitors. Using the DFT and conceptual-DFT methods, it was found that the global reactivity indices of the optimized molecular structures of the inhibitors could be used to predict their pharmacological activity. In addition, molecular docking programs (AutoDock4, Molegro Virtual Docker, and GOLD) were used to find the best potential inhibitors by looking at how they interact with key amino acid residues (His296, Asp 345, and Ser441) in the catalytic triad. The results show that in many cases, at least one of the amino acids in the triad is involved in the interaction. In the best cases, Asp435 interacts with the terminal nitrogen atoms of the side chains in a similar way to inhibitors such as nafamostat, camostat, and gabexate. Since the copper compounds localize just above the catalytic triad, they could stop substrates from getting into it. The binding energies are in the range of other synthetic drugs already on the market. Because serine protease could be an excellent target to stop the virus from getting inside the cell, the analyzed complexes are an excellent place to start looking for new drugs to treat COVID-19.

3.
Front Chem ; 10: 830511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252118

RESUMO

The synthesis and theoretical-experimental characterization of a novel diprotanated decavanadate is presented here due to our search for novel anticancer metallodrugs. Tris(2-pyridylmethyl)amine (TPMA), which is also known to have anticancer activity in osteosarcoma cell lines, was introduced as a possible cationic species that could act as a counterpart for the decavanadate anion. However, the isolated compound contains the previously reported vanadium (V) dioxido-tpma moieties, and the decavanadate anion appears to be diprotonated. The structural characterization of the compound was performed by infrared spectroscopy and single-crystal X-ray diffraction. In addition, DFT calculations were used to analyze the reactive sites involved in the donor-acceptor interactions from the molecular electrostatic potential maps. The level of theory mPW1PW91/6-31G(d)-LANL2DZ and ECP = LANL2DZ for the V atom was used. These insights about the compounds' main interactions were supported by analyzing the noncovalent interactions utilizing the AIM and Hirshfeld surfaces approach. Molecular docking studies with small RNA fragments were used to assess the hypothesis that decavanadate's anticancer activity could be attributed to its interaction with lncRNA molecules. Thus, a combination of three potentially beneficial components could be evaluated in various cancer cell lines.

4.
Neurochem Res ; 46(5): 1151-1165, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33559829

RESUMO

The consumption of foods rich in carbohydrates, saturated fat, and sodium, accompanied by a sedentary routine, are factors that contribute to the progress of metabolic syndrome (MS). In this way, they cause the accumulation of body fat, hypertension, dyslipidemia, and hyperglycemia. Additionally, MS has been shown to cause oxidative stress, inflammation, and death of neurons in the hippocampus. Consequently, spatial and recognition memory is affected. It has recently been proposed that metformin decavanadate (MetfDeca) exerts insulin mimetic effects that enhance metabolism in MS animals; however, what effects it can cause on the hippocampal neurons of rats with MS are unknown. The objective of the work was to evaluate the effect of MetfDeca on hippocampal neurodegeneration and recognition memory in rats with MS. Administration of MetfDeca for 60 days in MS rats improved object recognition memory (NORt). In addition, MetfDeca reduced markers of oxidative stress and hippocampal neuroinflammation. Accompanied by an increase in the density and length of the dendritic spines of the hippocampus of rats with MS. We conclude that MetfDeca represents an important therapeutic agent to treat MS and induce neuronal and cognitive restoration mechanisms.


Assuntos
Memória/efeitos dos fármacos , Síndrome Metabólica/tratamento farmacológico , Metformina/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Vanadatos/uso terapêutico , Animais , Catalase/metabolismo , Combinação de Medicamentos , Hipocampo/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/patologia , Masculino , Síndrome Metabólica/complicações , Síndrome Metabólica/patologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Superóxido Dismutase/efeitos dos fármacos
5.
Molecules ; 25(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066356

RESUMO

Transition metal-based compounds have shown promising uses as therapeutic agents. Among their unique characteristics, these compounds are suitable for interaction with specific biological targets, making them important potential drugs to treat various diseases. Copper compounds, of which Casiopeinas® are an excellent example, have shown promising results as alternatives to current cancer therapies, in part because of their intercalative properties with DNA. Vanadium compounds have been extensively studied for their pharmacological properties and application, mostly in diabetes, although recently, there is a growing interest in testing their activity as anti-cancer agents. In the present work, two compounds, [Cu(Metf)(bipy)Cl]Cl·2H2O and [Cu(Impy)(Gly)(H2O)]VO3, were obtained and characterized by visible and FTIR spectroscopies, single-crystal X-ray diffraction, and theoretical methods. The structural and electronic properties of the compounds were calculated through the density functional theory (DFT) using the Austin-Frisch-Petersson functional with dispersion APFD, and the 6-311 + G(2d,p) basis set. Non-covalent interactions were analyzed using Hirshfeld surface analysis (HSA) and atom in molecules analysis (AIM). Additionally, docking analysis to test DNA/RNA interactions with the Casiopeina-like complexes were carried out. The compounds provide metals that can interact with critical biological targets. In addition, they show interesting non-covalent interactions that are responsible for their supramolecular arrangements.


Assuntos
Antineoplásicos/química , Cobre/química , Compostos Organometálicos/química , Compostos de Vanádio/química , Antineoplásicos/síntese química , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Teoria da Densidade Funcional , Simulação de Acoplamento Molecular , Compostos Organometálicos/síntese química , RNA de Transferência/química , RNA de Transferência/metabolismo , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Vanádio/síntese química
6.
J Inorg Biochem ; 208: 111081, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32531543

RESUMO

Over the last decade, copper and vanadium complexes have shown promising properties for the treatment of several types of cancer. In particular, Casiopeinas®, a group of copper-based complexes, has received specific attention, and their mechanism of action has been extensively studied since their structure is simple and their synthesis may be affordable. Similarly, vanadium-containing compounds in the form of complexes and simple polyoxovanadates have also been studied as antitumor agents. Here, potential prodrugs that would release the two metals, V and Cu, in usable form to act in conjunction against cancer cells are reported. The new series of Casiopeinas-like compounds are bridged by a cyclotetravanadate ion with the generic formula [Cu(N,N')(AA)]2•(V4O12), where (N,N') represent 1,10-phenanthroline and 2,2'-bipyridine, and (AA) are aminoacidate ions (Lysine and Ornithine). The compounds were characterized by elemental analysis, single-crystal X-ray diffraction and Visible, FTIR, and Raman spectroscopies, as well as 51V NMR, EPR, and Thermogravimetric Analysis. Additionally, theoretical calculations based on the Density Functional Theory (DFT) were carried out to model the compounds. Optimized structures, theoretical IR, and Raman spectra were also obtained, as well as docking analysis to test DNA interactions with the casiopeina-like complexes. The compounds may act as prodrugs by providing acting molecules that have showed potential pharmacological properties for the treatment of several types of cancer.


Assuntos
Antineoplásicos , Complexos de Coordenação , Cobre , Neoplasias/tratamento farmacológico , Pró-Fármacos , Vanadatos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cobre/farmacologia , Humanos , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Vanadatos/síntese química , Vanadatos/química , Vanadatos/farmacologia
7.
J Inorg Biochem ; 203: 110862, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31683130

RESUMO

Photodynamic therapy (PDT) is an alternative treatment widely used against cancer. PDT requires molecular systems, known as photosensitizers (PS), which not only exhibit strong absorption at a particular wavelength range, but also need to be selectively accumulated inside cancer cells. PS are activated by specific wavelengths that cause tumor cell death by mechanisms related with oxidative stress. In this paper, three oxidovanadium(V) complexes linked to a Schiff base, which exhibit anticancer activity by displaying desirable accumulation inside malignant cells, are studied using Density Functional Theory (DFT) and Time Dependent-DFT (TD-DFT) methodologies to characterize their structural and photophysical properties as possible PS. The maximum absorption of these complexes in aqueous solution was predicted to be approximately 460 nm presenting a ligand-to-metal charge transfer. Additionally, we describe the photodynamic type reaction that these complexes can undergo when considered as PS candidates. Our results suggest that the system, containing triethylammonium as substituent, is the most suitable complex to act both as PS and as a possible therapeutic candidate in PDT.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Fármacos Fotossensibilizantes/química , Bases de Schiff/química , Teoria da Densidade Funcional , Modelos Químicos , Vanádio/química
8.
Biol Trace Elem Res ; 188(1): 68-98, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30350272

RESUMO

Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.


Assuntos
Diabetes Mellitus/metabolismo , Hipoglicemiantes/uso terapêutico , Compostos de Vanádio/uso terapêutico , Vanádio/química , Vanádio/farmacologia , Animais , Diabetes Mellitus/tratamento farmacológico , Humanos , Hipoglicemiantes/química , Vanádio/sangue , Compostos de Vanádio/química
9.
Front Chem ; 6: 402, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333969

RESUMO

Cytosine, a DNA and RNA building-block, and Metformin, the most widely prescribed drug for the treatment of Type 2 Diabetes mellitus were made to react separately with ammonium or sodium metavanadates in acidic aqueous solutions to obtain two polyoxovanadate salts with a 6:1 ratio of cation-anion. Thus, compounds [HCyt]6[V10O28]·4H2O, 1 and [HMetf]6[V10O28]·6H2O, 2 (where HCyt = Cytosinium cation, [C4H6N3O]+ and HMetf = Metforminium cation, [C4H12N5]+) were obtained and characterized by elemental analysis, single crystal X-ray diffraction, vibrational spectroscopy (IR and Raman), solution 51V-NMR, thermogravimetric analysis (TGA-DTGA), as well as, theoretical methods. Both compounds crystallized in P 1 ¯   space group with Z' = 1/2, where the anionic charge of the centrosymmetric ion [V10O28]6- is balanced by six Cytosinium and six Metforminium counterions, respectively. Compound 1 is stabilized by π-π stacking interactions coming from the aromatic rings of HCyt cations, as denoted by close contacts of 3.63 Å. On the other hand, guanidinium moieties from the non-planar HMetf in Compound 2 interact with decavanadate µ2-O atoms via N-H···O hydrogen bonds. The vibrational spectroscopic data of both IR and Raman spectra show that the dominant bands in the 1000-450 cm-1 range are due to the symmetric and asymmetric ν(V-O) vibrational modes. In solution, 51V-NMR experiments of both compounds show that polyoxovanadate species are progressively transformed into the monomeric, dimeric and tetrameric oxovanadates. The thermal stability behavior suggests a similar molecular mechanism regarding the loss of water molecules and the decomposition of the organic counterions. Yet, no changes were observed in the TGA range of 540-580°C due to the stability of the [V10O28]6- fragment. Dispersion-corrected density functional theory (DFT-D) calculations were carried out to model the compounds in aqueous phase using a polarized continuum model calculation. Optimized structures were obtained and the main non-covalent interactions were characterized. Biological activities of these compounds are also under investigation. The combination of two therapeutic agents opens up a window toward the generation of potential metalopharmaceuticals with new and exciting pharmacological properties.

10.
Bioinorg Chem Appl ; 2018: 2151079, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30026756

RESUMO

Vanadium(IV/V) compounds have been studied as possible metallopharmaceutical drugs against diabetes mellitus. However, mechanisms of action and toxicological threshold have been tackled poorly so far. In this paper, our purposes were to evaluate the metabolic activity on dyslipidemia and dysglycemia, insulin signaling in liver and adipose tissue, and toxicology of the title compound. To do so, the previously reported bisammonium tetrakis 4-(N,N-dimethylamino)pyridinium decavanadate, the formula of which is [DMAPH]4(NH4)2[V10O28]·8H2O (where DMAPH is 4-dimethylaminopyridinium ion), was synthesized, and its dose-response curve on hyperglycemic rats was evaluated. A Long-Evans rat model showing dyslipidemia and dysglycemia with parameters that reproduce metabolic syndrome and severe insulin resistance was generated. Two different dosages, 5 µmol and 10 µmol twice a week of the title compound (equivalent to 2.43 mg·V/kg/day and 4.86 mg·V/kg/day, resp.), were administered intraperitoneal (i.p.) for two months. Then, an improvement on each of the following parameters was observed at a 5 µmol dose: weight reduction, abdominal perimeter, fatty index, body mass index, oral glucose tolerance test, lipid profile, and adipokine and insulin resistance indexes. Nevertheless, when the toxicological profile was evaluated at a 10 µmol dose, it did not show complete improvement, tested by the liver and adipose histology, as well as by insulin receptor phosphorylation and GLUT-4 expression. In conclusion, the title compound administration produces regulation on lipids and carbohydrates, regardless of dose, but the pharmacological and toxicological threshold for cell regulation are suggested to be up to 5 µmol (2.43 mg·V/kg/day) dose twice per week.

11.
J Chem Neuroanat ; 82: 65-75, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28219715

RESUMO

Metabolic syndrome (MS) is a serious public health problem, which can promote neuronal alterations in cognitive regions related to learning and memory processes, such as the hippocampus. However, up to now there has been information of a regional segregation of this damage. In this study, we evaluate the MS effect on the neuronal morphology of the hippocampus. Our results demonstrate that 90days of a high-calorie diet alters the metabolic energy markers causing the MS and causes memory impairments, evaluated by the recognition of novel objects test (NORT). In addition, MS animals showed significant differences in dendritic order, total dendritic length and density of dendritic spines in CA1, CA3 and the dentate gyrus (DG) of the hippocampal area, compared with rats fed with a normocaloric diet (vehicle group). Furthermore, the immunoreactivity to synaptophysin (Syp) decreased in the hippocampus of the MS animals compared to the vehicle group. These results indicate that metabolic alterations induced by the MS affect hippocampal plasticity and hippocampal dependent memory processes.


Assuntos
Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Síndrome Metabólica/metabolismo , Plasticidade Neuronal/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Comportamento Exploratório/fisiologia , Hipocampo/patologia , Masculino , Transtornos da Memória/patologia , Transtornos da Memória/psicologia , Síndrome Metabólica/patologia , Síndrome Metabólica/psicologia , Ratos , Ratos Wistar
12.
Oxid Med Cell Longev ; 2016: 6058705, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27119007

RESUMO

New potential drugs based on vanadium are being developed as possible treatments for diabetes mellitus (DM) and its complications. In this regard, our working group developed metforminium decavanadate (MetfDeca), a compound with hypoglycemic and hypolipidemic properties. MetfDeca was evaluated in models of type 1 and type 2 diabetes mellitus, on male Wistar rats. Alloxan-induction was employed to produce DM1 model, while a hypercaloric-diet was employed to generate DM2 model. Two-month treatments with 3.7 µg (2.5 µM)/300 g/twice a week for DM2 and 7.18 µg (4.8 µM)/300 g/twice a week for DM1 of MetfDeca, respectively, were administered. The resulting pharmacological data showed nontoxicological effects on liver and kidney. At the same time, MetfDeca showed an improvement of carbohydrates and lipids in tissues and serum. MetfDeca treatment was better than the monotherapies with metformin for DM2 and insulin for DM1. Additionally, MetfDeca showed a protective effect on pancreatic beta cells of DM1 rats, suggesting a possible regeneration of these cells, since they recovered their insulin levels. Therefore, MetfDeca could be considered not only as an insulin-mimetic agent, but also as an insulin-enhancing agent. Efforts to elucidate the mechanism of action of this compound are now in progress.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Metformina/uso terapêutico , Vanadatos/uso terapêutico , Animais , Diabetes Mellitus Experimental/sangue , Teste de Tolerância a Glucose , Hemoglobinas Glicadas/metabolismo , Glicogênio/metabolismo , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico , Insulina/uso terapêutico , Masculino , Metformina/administração & dosagem , Ratos Wistar , Triglicerídeos/sangue , Vanadatos/administração & dosagem
13.
J Inorg Biochem ; 147: 85-92, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25920353

RESUMO

Because of the increasing global spread of type 2 diabetes mellitus, there is a need to develop new antidiabetic agents. Recently we have synthesized new decavanadates using metformin as counterion. In particular, the compound containing three metforminium dications has been obtained in high yield and has been completely characterized. Biological studies using Wistar rats that have been fed with a high caloric diet inducing insulin resistance and metabolic syndrome were carried out. Results of the impact on key biochemical parameters mediated by metformin alone and the new compound are here presented. The metforminium decavanadate (H2Metf)3[V10O28]·8H2O, abbreviated as Metf-V10O28, was shown to have pharmacological potential as a hypoglycemic, lipid-lowering and metabolic regulator, since the resulting compound made of the two components with antidiabetic activities, reduces both dosage and time of administration (twice a week). Hence, due to the beneficial effects induced by the metforminium decavanadate we recommend to continue the exploration into the mechanism and toxicology of this new compound.


Assuntos
Transtornos do Metabolismo de Glucose/tratamento farmacológico , Hiperlipidemias/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Hipolipemiantes/uso terapêutico , Metformina/análogos & derivados , Metformina/uso terapêutico , Vanadatos/uso terapêutico , Animais , Metabolismo dos Carboidratos , Dieta Hiperlipídica/efeitos adversos , Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacocinética , Hipolipemiantes/síntese química , Hipolipemiantes/farmacocinética , Metabolismo dos Lipídeos , Masculino , Metformina/síntese química , Metformina/farmacocinética , Ratos , Ratos Wistar , Distribuição Tecidual , Vanadatos/síntese química , Vanadatos/farmacocinética
14.
Artigo em Inglês | MEDLINE | ID: mdl-16455291

RESUMO

The acid constants of mangiferin (a natural xanthonoid) in aqueous solution were determined through an UV/vis spectroscopic study employing the SQUAD program as a computational tool. A NMR study complements the pK(a) values assignment and evidences a H-bridge presence on 1-C. The chemical model used was consistent with the experimental data obtained. The pK(a) values determined with this procedure were as follows: H(4)(MGF)=H(3)(MGF)(-)+H(+), pKa1 (6-H)=6.52+/-0.06; H(3)(MGF)(-)=H(2)(MGF)(2-)+H(+), pKa2 (3-H)=7.97+/-0.06; H(2)(MGF)(2-)=H(MGF)(3-)+H(+), pKa3 (7-H)=9.44+/-0.04; H(MGF)(3-)=(MGF)(4-)+H(+), pKa4 (1-H)=12.10+/-0.01; where it has been considered mangiferin C(19)H(18)O(11) as H(4)(MGF). Mangiferin UV/vis spectral behavior, stability study in aqueous solution as well as NMR spectroscopy studies: one-dimensional (1)H,(13)C, 2D correlated (1)H/(13)C performed by (g)-HSQC and (g)-HMBC methods; are also presented. pK(a) values determination of H(4)(MGF) in aqueous solution is a necessary contribution to subsequent pharmacokinetic study, and a step towards the understanding of its biological effects.


Assuntos
Isótopos de Carbono/análise , Espectroscopia de Ressonância Magnética/métodos , Espectrofotometria Ultravioleta/métodos , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética/métodos , Modelos Químicos , Prótons , Hidróxido de Sódio/química , Raios Ultravioleta , Xantonas/química
15.
Artigo em Inglês | MEDLINE | ID: mdl-15084328

RESUMO

The stability of curcumin (H3Cur) in aqueous media is improved when the systems in which it is present are at high pH values (higher than 11.7), fitting a model describable by a pseudo-zero order with a rate constant k' for the disappearance of the Cur3- species of 1.39 (10(-9)) Mmin(-1). There were three acidity constants measured for the curcumin as follows: pKA3 = 10.51 +/- 0.01 corresponding to the equilibrium HCur2- = Cur3- + H+, a pKA2 = 9.88 +/- 0.02 corresponding to the equilibrium H2Cur- = HCur-(2) + H+. These pKA values were attributed to the hydrogen of the phenol part of the curcumin, while the pKA1 = 8.38 +/- 0.04 corresponds to the equilibrium H3Cur = H2Cur- + H+ and is attributed the acetylacetone type group. Formation of quinoid structures play an important role in the tautomeric forms of the curcumin in aqueous media, which makes the experimental values differ from the theoretically calculated ones, depending on the conditions adopted in the study.


Assuntos
Curcumina/química , Soluções/química , Espectrofotometria/métodos , Absorção , Hidrogênio/química , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Conformação Molecular , Prótons , Solubilidade , Termodinâmica , Fatores de Tempo , Raios Ultravioleta
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 60(5): 1105-13, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15084330

RESUMO

The formation of complexes among the Curcumin, Fe(III) and Fe(II) was studied in aqueous media within the 5-11 pH range by means of UV-Vis spectrophotometry and cyclic voltammetry. When the reaction between the Curcumin and the ions present in basic media took place, the resulting spectra of the systems Curcumin-Fe(III) and Curcumin-Fe(II) presented a similar behaviour. The cyclic voltammograms in basic media indicated that a chemical reaction has taken place between the Curcumin and Fe(III) before that of the formation of complexes. Data processing with SQUAD permitted to calculate the formation constants of the complexes Curcumin-Fe(III), corresponding to the species FeCur (lob beta110 = 22.25 +/- 0.03) and FeCur(OH)- (log beta111 = 12.14 +/- 0.03), while for the complexes Curcumin-Fe(II) the corresponding formation constants of the species FeCur- (log beta110 = 9.20 +/- 0.04), FeHCur (log beta111 = 19.76 +/- 0.03), FeH2Cur+ (log beta112 = 28.11 +/- 0.02).


Assuntos
Curcumina/química , Eletroquímica/métodos , Ferro/química , Espectrofotometria/métodos , Água/química , Algoritmos , Concentração de Íons de Hidrogênio , Íons , Modelos Químicos , Software , Raios Ultravioleta
17.
Acta Crystallogr C ; 58(Pt 4): O228-30, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11932551

RESUMO

The structure of pyridine-2,6-dicarboxylic acid, C(7)H(5)NO(4), has been determined at 0.71 A resolution. The molecule is located on a site with mirror symmetry. A one-dimensional supramolecular structure is stabilized in the solid state through a strong symmetric double hydrogen bond, with H* * *O distances of 1.86 (3) A and O-H* * *O angles of 167 (3) and 171 (5) degrees. This arrangement is similar but not identical to that reported for the isoelectronic isophthalic acid (benzene-1,3-dicarboxylic acid).


Assuntos
Ácidos Picolínicos/química , Cristalografia por Raios X , Inibidores Enzimáticos/química , Ligação de Hidrogênio , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...