Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunol Rev ; 309(1): 64-74, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35781671

RESUMO

In this review, we discuss how IgG antibodies can modulate inflammatory signaling during viral infections with a focus on CD16a-mediated functions. We describe the structural heterogeneity of IgG antibody ligands, including subclass and glycosylation that impact binding by and downstream activity of CD16a, as well as the heterogeneity of CD16a itself, including allele and expression density. While inflammation is a mechanism required for immune homeostasis and resolution of acute infections, we focus here on two infectious diseases that are driven by pathogenic inflammatory responses during infection. Specifically, we review and discuss the evolving body of literature showing that afucosylated IgG immune complex signaling through CD16a contributes to the overwhelming inflammatory response that is central to the pathogenesis of severe forms of dengue disease and coronavirus disease 2019 (COVID-19).


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Receptores de IgG
2.
Curr Opin Immunol ; 77: 102231, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35797920

RESUMO

The effector activity of IgG antibodies is regulated at several levels, including IgG subclass, modifications of the Fc glycan, and the distribution of Type I and II Fcγ receptors (FcγR) on effector cells. Here, we explore how Fc glycosylation, particularly sialylation and fucosylation, tunes cellular responses to immune complexes. We review the current understanding of the pathways and mechanisms underlying this biology, address FcγR in antigen presentation, and discuss aspects of the clinical understanding of Fc glycans in therapies and disease.


Assuntos
Imunoglobulina G , Receptores de IgG , Complexo Antígeno-Anticorpo/metabolismo , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas , Imunoglobulina G/metabolismo , Polissacarídeos
3.
Sci Transl Med ; 14(634): eabn7842, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35025672

RESUMO

Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that have mutations associated with increased transmission and antibody escape have arisen over the course of the current pandemic. Although the current vaccines have largely been effective against past variants, the number of mutations found on the Omicron (B.1.1.529) spike protein appear to diminish the protection conferred by preexisting immunity. Using vesicular stomatitis virus (VSV) pseudoparticles expressing the spike protein of several SARS-CoV-2 variants, we evaluated the magnitude and breadth of the neutralizing antibody response over time in individuals after infection and in mRNA-vaccinated individuals. We observed that boosting increases the magnitude of the antibody response to wild-type (D614), Beta, Delta, and Omicron variants; however, the Omicron variant was the most resistant to neutralization. We further observed that vaccinated healthy adults had robust and broad antibody responses, whereas responses may have been reduced in vaccinated pregnant women, underscoring the importance of learning how to maximize mRNA vaccine responses in pregnant populations. Findings from this study show substantial heterogeneity in the magnitude and breadth of responses after infection and mRNA vaccination and may support the addition of more conserved viral antigens to existing SARS-CoV-2 vaccines.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Feminino , Humanos , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/prevenção & controle , Complicações Infecciosas na Gravidez/virologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologia
4.
Sci Transl Med ; 14(635): eabm7853, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35040666

RESUMO

A damaging inflammatory response is implicated in the pathogenesis of severe coronavirus disease 2019 (COVID-19), but mechanisms contributing to this response are unclear. In two prospective cohorts, early non-neutralizing, afucosylated immunoglobulin G (IgG) antibodies specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were associated with progression from mild to more severe COVID-19. To study the biology of afucosylated IgG immune complexes, we developed an in vivo model that revealed that human IgG-Fc-gamma receptor (FcγR) interactions could regulate inflammation in the lung. Afucosylated IgG immune complexes isolated from patients with COVID-19 induced inflammatory cytokine production and robust infiltration of the lung by immune cells. In contrast to the antibody structures that were associated with disease progression, antibodies that were elicited by messenger RNA SARS-CoV-2 vaccines were highly fucosylated and enriched in sialylation, both modifications that reduce the inflammatory potential of IgG. Vaccine-elicited IgG did not promote an inflammatory lung response. These results show that human IgG-FcγR interactions regulate inflammation in the lung and define distinct lung activities mediated by the IgG that are associated with protection against, or progression to, severe COVID-19.


Assuntos
COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Vacinas contra COVID-19 , Humanos , Estudos Prospectivos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
5.
Immunity ; 54(9): 1912-1914, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34464594

RESUMO

Monoclonal antibodies show efficacy in treating COVID-19, but the functional requirements for protection are unclear. In this issue of Immunity, Ullah et al. (2021) develop a stable SARS-CoV-2 reporter virus and use bioluminescence imaging to longitudinally monitor infection and assess neutralizing monoclonal antibody interventions in mice. They find that antibody-mediated protection depends on the Fc domain and Fc-gamma receptor-expressing immune cells.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Animais , Anticorpos Antivirais , Humanos , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
6.
bioRxiv ; 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34075376

RESUMO

A damaging inflammatory response is strongly implicated in the pathogenesis of severe COVID-19 but mechanisms contributing to this response are unclear. In two prospective cohorts, early non-neutralizing, afucosylated, anti-SARS-CoV-2 IgG predicted progression from mild, to more severe COVID-19. In contrast to the antibody structures that predicted disease progression, antibodies that were elicited by mRNA SARS-CoV-2 vaccines were low in Fc afucosylation and enriched in sialylation, both modifications that reduce the inflammatory potential of IgG. To study the biology afucosylated IgG immune complexes, we developed an in vivo model which revealed that human IgG-FcγR interactions can regulate inflammation in the lung. Afucosylated IgG immune complexes induced inflammatory cytokine production and robust infiltration of the lung by immune cells. By contrast, vaccine elicited IgG did not promote an inflammatory lung response. Here, we show that IgG-FcγR interactions can regulate inflammation in the lung and define distinct lung activities associated with the IgG that predict severe COVID-19 and protection against SARS-CoV-2. ONE SENTENCE SUMMARY: Divergent early antibody responses predict COVID-19 disease trajectory and mRNA vaccine response and are functionally distinct in vivo .

7.
Nat Cancer ; 2(1): 18-33, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121890

RESUMO

Innate pattern recognition receptor agonists, including Toll-like receptors (TLRs), alter the tumor microenvironment and prime adaptive antitumor immunity. However, TLR agonists present toxicities associated with widespread immune activation after systemic administration. To design a TLR-based therapeutic suitable for systemic delivery and capable of safely eliciting tumor-targeted responses, we developed immune-stimulating antibody conjugates (ISACs) comprising a TLR7/8 dual agonist conjugated to tumor-targeting antibodies. Systemically administered human epidermal growth factor receptor 2 (HER2)-targeted ISACs were well tolerated and triggered a localized immune response in the tumor microenvironment that resulted in tumor clearance and immunological memory. Mechanistically, ISACs required tumor antigen recognition, Fcγ-receptor-dependent phagocytosis and TLR-mediated activation to drive tumor killing by myeloid cells and subsequent T-cell-mediated antitumor immunity. ISAC-mediated immunological memory was not limited to the HER2 ISAC target antigen since ISAC-treated mice were protected from rechallenge with the HER2- parental tumor. These results provide a strong rationale for the clinical development of ISACs.


Assuntos
Imunoterapia , Neoplasias , Imunidade Adaptativa , Animais , Antígenos de Neoplasias , Imunoterapia/métodos , Camundongos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
8.
Immunol Res ; 58(2-3): 374-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24781193

RESUMO

Monocytes rapidly infiltrate inflamed tissues and differentiate into CD209(+) inflammatory dendritic cells (DCs) that promote robust immunity or, if unregulated, inflammatory disease. Previous studies in experimental animal models indicate that inflammatory DC depletion through systemic elimination of their monocyte precursors with clodronate-loaded liposomes ameliorates the development of psoriasis and other diseases. However, translation of systemic monocyte depletion strategies is difficult due to the importance of monocytes during homeostasis and infection clearance. Here, we describe a strategy that avoids the monocyte intermediates to deplete inflammatory DCs through antibody-loaded toxin. Mice with an abundance of inflammatory DCs as a consequence of lipopolysaccharide exposure were treated with anti-CD209 antibody conjugated to saporin, a potent ribosome inactivator. The results demonstrate depletion of CD209(+) DCs. This strategy could prove useful for the targeted reduction of inflammatory DCs in disease.


Assuntos
Anticorpos Monoclonais/imunologia , Moléculas de Adesão Celular/antagonistas & inibidores , Células Dendríticas/imunologia , Imunotoxinas/imunologia , Lectinas Tipo C/antagonistas & inibidores , Procedimentos de Redução de Leucócitos , Receptores de Superfície Celular/antagonistas & inibidores , Proteínas Inativadoras de Ribossomos Tipo 1/imunologia , Animais , Moléculas de Adesão Celular/metabolismo , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Inflamação/imunologia , Inflamação/metabolismo , Lectinas Tipo C/metabolismo , Camundongos , Receptores de Superfície Celular/metabolismo , Saporinas
9.
PLoS One ; 8(10): e76258, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098455

RESUMO

Two critical functions of dendritic cells (DC) are to activate and functionally polarize T cells. Activated T cells can, in turn, influence DC maturation, although their effect on de novo DC development is poorly understood. Here we report that activation of T cells in mice, with either an anti-CD3 antibody or super antigen, drives the rapid formation of CD209(+)CD11b(+)CD11c(+) MHC II(+) DC from monocytic precursors (Mo-DC). GM-CSF is produced by T cells following activation, but surprisingly, it is not required for the formation of CD209(+) Mo-DC. CD40L, however, is critical for the full induction of Mo-DC following T cell activation. T cell induced CD209(+) Mo-DC are comparable to conventional CD209(-) DC in their ability to stimulate T cell proliferation. However, in contrast to conventional CD209(-) DC, CD209(+) Mo-DC fail to effectively polarize T cells, as indicated by a paucity of T cell cytokine production. The inability of CD209(+) Mo-DC to polarize T cells is partly explained by increased expression of PDL-2, since blockade of this molecule restores some polarizing capacity to the Mo-DC. These findings expand the range of signals capable of driving Mo-DC differentiation in vivo beyond exogenous microbial factors to include endogenous factors produced following T cell activation.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Ativação Linfocitária/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Receptores de Superfície Celular/metabolismo , Subpopulações de Linfócitos T/imunologia , Animais , Ligante de CD40/metabolismo , Diferenciação Celular/imunologia , Movimento Celular , Células Dendríticas/imunologia , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Linfonodos/imunologia , Camundongos , Camundongos Knockout , Monócitos/imunologia , Subpopulações de Linfócitos T/metabolismo
10.
J Immunol ; 191(3): 1175-87, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23794631

RESUMO

In chronically inflamed tissues, such as those affected by autoimmune disease, activated Th cells often colocalize with monocytes. We investigate in this study how murine Th cells influence the phenotype and function of monocytes. The data demonstrate that Th1, Th2, and Th17 subsets promote the differentiation of autologous monocytes into MHC class II(+), CD11b(+), CD11c(+) DC that we call DCTh. Although all Th subsets induce the formation of DCTh, activated Th17 cells uniquely promote the formation of IL-12/IL-23-producing DCTh (DCTh17) that can polarize both naive and Th17 cells to a Th1 phenotype. In the inflamed CNS of mice with Th17-mediated experimental autoimmune encephalomyelitis, Th cells colocalize with DC, as well as monocytes, and the Th cells obtained from these lesions drive the formation of DCTh that are phenotypically indistinguishable from DCTh17 and polarize naive T cells toward a Th1 phenotype. These results suggest that DCTh17 are critical in the interplay of Th17- and Th1-mediated responses and may explain the previous finding that IL-17-secreting Th cells become IFN-γ-secreting Th1 cells in experimental autoimmune encephalomyelitis and other autoimmune disorders.


Assuntos
Autoimunidade/imunologia , Células Dendríticas/imunologia , Inflamação/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Antígeno CD11b/metabolismo , Antígeno CD11c/metabolismo , Diferenciação Celular , Movimento Celular , Polaridade Celular , Células Cultivadas , Sistema Nervoso Central/imunologia , Encefalomielite Autoimune Experimental/imunologia , Feminino , Antígenos de Histocompatibilidade Classe II/metabolismo , Interferon gama/metabolismo , Interleucina-12/biossíntese , Interleucina-17/metabolismo , Interleucina-23/biossíntese , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...