Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Small ; 20(27): e2309055, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552225

RESUMO

Developing new approaches amenable to the measurement of neuronal physiology in real-time is a very active field of investigation, as it will offer improved methods to assess the impact of diverse insults on neuronal homeostasis. Here, the development of an in vitro bio platform is reported which can record the electrical activity of cultured primary rat cortical neurons with extreme sensitivity, while simultaneously tracking the localized changes in the pH of the culture medium. This bio platform features passive vertical nanoprobes with ultra-high signal resolution (several mV amplitude ranges) and Chem-FinFETs (pH sensitivity of sub-0.1 pH units), covering an area as little as a neuronal soma. These multi-sensing units are arranged in an array to probe both chemically and electrically an equivalent surface of ≈ 0.5 mm2. A homemade setup is also developed which allows recording of multiplexed data in real-time (10 ps range) from the active chem-sensors and passive electrodes and which is used to operate the platform. Finally, a proof-of-concept is presented for a neuro-relevant application, by investigating the effect on neuronal activity of Amyloid beta oligomers, the main toxic peptide in Alzheimer's Disease, which reveals that exposure to amyloid beta oligomers modify the amplitude, but not the frequency, of neuronal firing, without any detectable changes in pH values along this process.


Assuntos
Neurônios , Concentração de Íons de Hidrogênio , Neurônios/fisiologia , Animais , Ratos , Eletrodos , Peptídeos beta-Amiloides/química , Células Cultivadas
2.
Viruses ; 14(11)2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36366462

RESUMO

Determining the structural organisation of viral replication complexes and unravelling the impact of infection on cellular homeostasis represent important challenges in virology. This may prove particularly useful when confronted with viruses that pose a significant threat to human health, that appear unique within their family, or for which knowledge is scarce. Among Mononegavirales, bornaviruses (family Bornaviridae) stand out due to their compact genomes and their nuclear localisation for replication. The recent recognition of the zoonotic potential of several orthobornaviruses has sparked a surge of interest in improving our knowledge on this viral family. In this work, we provide a complete analysis of the structural organisation of Borna disease virus 1 (BoDV-1) phosphoprotein (P), an important cofactor for polymerase activity. Using X-ray diffusion and diffraction experiments, we revealed that BoDV-1 P adopts a long coiled-coil α-helical structure split into two parts by an original ß-strand twist motif, which is highly conserved across the members of whole Orthobornavirus genus and may regulate viral replication. In parallel, we used BioID to determine the proximal interactome of P in living cells. We confirmed previously known interactors and identified novel proteins linked to several biological processes such as DNA repair or mRNA metabolism. Altogether, our study provides important structure/function cues, which may improve our understanding of BoDV-1 pathogenesis.


Assuntos
Vírus da Doença de Borna , Bornaviridae , Animais , Humanos , Vírus da Doença de Borna/genética , Fosfoproteínas/genética , Bornaviridae/genética , Reparo do DNA , DNA , RNA Mensageiro/genética
3.
Virologie (Montrouge) ; 26(4): 275-281, 2022 07 01.
Artigo em Francês | MEDLINE | ID: mdl-36120974

RESUMO

The reality of human infections by Bornaviridae (and particularly by mammalian Orthobornaviruses BoDV-1 and BoDV-2) has long been the centre of debate and controversies. New data, however, have profoundly modified the game by providing strong and unambiguous pieces of evidence, even if many points still need to be clarified. This review aims at presenting the current state of the question, based on today's knowledge.


La question de la réalité des infections humaines par les Bornaviridae (et plus précisément par les Orthobornavirus des mammifères BoDV-1 ou BoDV-2) a longtemps constitué un point de controverse. Des données récentes ont cependant profondément remanié les cartes et permettent désormais d'avoir quelques données solides en la matière. Il n'en reste pas moins que plusieurs aspects restent mal compris. Cette revue vise à faire le point, au vu de nos connaissances à ce jour.


Assuntos
Bornaviridae , Animais , Bornaviridae/genética , Humanos , Mamíferos , RNA Viral
4.
iScience ; 25(1): 103621, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35024577

RESUMO

Borna disease viruses (BoDV) have recently emerged as zoonotic neurotropic pathogens. These persistent RNA viruses assemble nuclear replication centers (vSPOT) in close interaction with the host chromatin. However, the topology of this interaction and its consequences on neuronal function remain unexplored. In neurons, DNA double-strand breaks (DSB) have been identified as novel epigenetic mechanisms regulating neurotransmission and cognition. Activity-dependent DSB contribute critically to neuronal plasticity processes, which could be impaired upon infection. Here, we show that BoDV-1 infection, or the singled-out expression of viral Nucleoprotein and Phosphoprotein, increases neuronal DSB levels. Of interest, inducing DSB promoted the recruitment anew of vSPOT colocalized with DSB and increased viral RNA replication. BoDV-1 persistence decreased neuronal activity and response to stimulation by dampening the surface expression of glutamate receptors. Taken together, our results propose an original mechanistic cross talk between persistence of an RNA virus and neuronal function, through the control of DSB levels.

5.
Sci Rep ; 11(1): 17705, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489498

RESUMO

Mortalin is a mitochondrial chaperone protein involved in quality control of proteins imported into the mitochondrial matrix, which was recently described as a sensor of neuronal stress. Mortalin is down-regulated in neurons of patients with neurodegenerative diseases and levels of Mortalin expression are correlated with neuronal fate in animal models of Alzheimer's disease or cerebral ischemia. To date, however, the links between Mortalin levels, its impact on mitochondrial function and morphology and, ultimately, the initiation of neurodegeneration, are still unclear. In the present study, we used lentiviral vectors to over- or under-express Mortalin in primary neuronal cultures. We first analyzed the early events of neurodegeneration in the axonal compartment, using oriented neuronal cultures grown in microfluidic-based devices. We observed that Mortalin down-regulation induced mitochondrial fragmentation and axonal damage, whereas its over-expression conferred protection against axonal degeneration mediated by rotenone exposure. We next demonstrated that Mortalin levels modulated mitochondrial morphology by acting on DRP1 phosphorylation, thereby further illustrating the crucial implication of mitochondrial dynamics on neuronal fate in degenerative diseases.


Assuntos
Córtex Cerebral/metabolismo , Proteínas de Choque Térmico HSP70/genética , Dinâmica Mitocondrial/fisiologia , Neurônios/metabolismo , Animais , Córtex Cerebral/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Rotenona/farmacologia
6.
Front Cell Dev Biol ; 9: 689122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568315

RESUMO

Extracellular vesicles (EVs) have increasingly been recognized as key players in a wide variety of physiological and pathological contexts, including during pregnancy. Notably, EVs appear both as possible biomarkers and as mediators involved in the communication of the placenta with the maternal and fetal sides. A better understanding of the physiological and pathological roles of EVs strongly depends on the development of adequate and reliable study models, specifically at the beginning of pregnancy where many adverse pregnancy outcomes have their origin. In this study, we describe the isolation of small EVs from a histoculture model of first trimester placental explants in normal conditions as well as upon infection by human cytomegalovirus. Using bead-based multiplex cytometry and electron microscopy combined with biochemical approaches, we characterized these small EVs and defined their associated markers and ultrastructure. We observed that infection led to changes in the expression level of several surface markers, without affecting the secretion and integrity of small EVs. Our findings lay the foundation for studying the functional role of EVs during early pregnancy, along with the identification of new predictive biomarkers for the severity and outcome of this congenital infection, which are still sorely lacking.

8.
J Pathol ; 254(1): 92-102, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33565082

RESUMO

Congenital infection of the central nervous system by human cytomegalovirus (HCMV) is a leading cause of permanent sequelae, including mental retardation or neurodevelopmental abnormalities. The most severe complications include smooth brain or polymicrogyria, which are both indicative of abnormal migration of neural cells, although the underlying mechanisms remain to be determined. To gain better insight on the pathogenesis of such sequelae, we assessed the expression levels of a set of neurogenesis-related genes, using HCMV-infected human neural stem cells derived from embryonic stem cells (NSCs). Among the 84 genes tested, we found dramatically increased expression of the gene PAFAH1B1, encoding LIS1 (lissencephaly-1), in HCMV-infected versus uninfected NSCs. Consistent with these findings, western blotting and immunofluorescence analyses confirmed the increased levels of LIS1 in HCMV-infected NSCs at the protein level. We next assessed the migratory abilities of HCMV-infected NSCs and observed that infection strongly impaired the migration of NSCs, without detectable effect on their proliferation. Moreover, we observed increased immunostaining for LIS1 in brains of congenitally infected fetuses, but not in control samples, highlighting the clinical relevance of our findings. Of note, PAFAH1B1 mutations (resulting in either haploinsufficiency or gain of function) are primary causes of hereditary neurodevelopmental diseases. Notably, mutations resulting in PAFAH1B1 haploinsufficiency cause classic lissencephaly. Taken together, our findings suggest that PAFAH1B1 is a critical target of HCMV infection. They also shine a new light on the pathophysiological basis of the neurological outcomes of congenital HCMV infection, by suggesting that defective neural cell migration might contribute to the pathogenesis of the neurodevelopmental sequelae of infection. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Infecções por Citomegalovirus/congênito , Infecções por Citomegalovirus/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/virologia , Encéfalo/metabolismo , Encéfalo/virologia , Infecções por Citomegalovirus/complicações , Humanos
9.
Langmuir ; 34(22): 6612-6620, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29754481

RESUMO

Despite significant progress, our knowledge of the functioning of the central nervous system still remains scarce to date. A better understanding of its behavior, in either normal or diseased conditions, goes through an increased knowledge of basic mechanisms involved in neuronal function, including at the single-cell level. This has motivated significant efforts for the development of miniaturized sensing devices to monitor neuronal activity with high spatial and signal resolution. One of the main challenges remaining to be addressed in this domain is, however, the ability to create in vitro spatially ordered neuronal networks at low density with a precise control of the cell location to ensure proper monitoring of the activity of a defined set of neurons. Here, we present a novel self-aligned chemical functionalization method, based on a repellant surface with patterned attractive areas, which permits the elaboration of low-density neuronal network down to individual cells with a high control of the soma location and axonal growth. This approach is compatible with complementary metal-oxide-semiconductor line technology at a wafer scale and allows performing the cell culture on packaged chip outside microelectronics facilities. Rat cortical neurons were cultured on such patterned surfaces for over one month and displayed a very high degree of organization in large networks. Indeed, more than 90% of the network nodes were settled by a soma and 100% of the connecting lines were occupied by a neurite, with a very good selectivity (low parasitic cell connections). After optimization, networks composed of 75% of unicellular nodes were obtained, together with a control at the micron scale of the location of the somas. Finally, we demonstrated that the dendritic neuronal growth was guided by the surface functionalization, even when micrometer scale topologies were encountered and we succeeded to control the extension growth along one-dimensional-aligned nanostructures with sub-micrometrical scale precision. This novel approach now opens the way for precise monitoring of neuronal network activity at the single-cell level.


Assuntos
Técnicas de Cultura de Células/métodos , Rede Nervosa/química , Animais , Células Cultivadas , Dendritos , Rede Nervosa/metabolismo , Neuritos , Neurônios/citologia , Ratos
10.
Proc Natl Acad Sci U S A ; 115(7): 1611-1616, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29378968

RESUMO

The analysis of the biology of neurotropic viruses, notably of their interference with cellular signaling, provides a useful tool to get further insight into the role of specific pathways in the control of behavioral functions. Here, we exploited the natural property of a viral protein identified as a major effector of behavioral disorders during infection. We used the phosphoprotein (P) of Borna disease virus, which acts as a decoy substrate for protein kinase C (PKC) when expressed in neurons and disrupts synaptic plasticity. By a lentiviral-based strategy, we directed the singled-out expression of P in the dentate gyrus of the hippocampus and we examined its impact on mouse behavior. Mice expressing the P protein displayed increased anxiety and impaired long-term memory in contextual and spatial memory tasks. Interestingly, these effects were dependent on P protein phosphorylation by PKC, as expression of a mutant form of P devoid of its PKC phosphorylation sites had no effect on these behaviors. We also revealed features of behavioral impairment induced by P protein expression but that were independent of its phosphorylation by PKC. Altogether, our findings provide insight into the behavioral correlates of viral infection, as well as into the impact of virus-mediated alterations of the PKC pathway on behavioral functions.


Assuntos
Doença de Borna/virologia , Vírus da Doença de Borna/fisiologia , Transtornos Cognitivos/etiologia , Hipocampo/virologia , Memória de Longo Prazo/fisiologia , Fosfoproteínas/metabolismo , Proteína Quinase C/metabolismo , Proteínas Estruturais Virais/metabolismo , Animais , Doença de Borna/metabolismo , Doença de Borna/patologia , Células Cultivadas , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Giro Denteado/metabolismo , Giro Denteado/patologia , Giro Denteado/virologia , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Mutação , Plasticidade Neuronal , Neurônios/metabolismo , Neurônios/patologia , Neurônios/virologia , Fosfoproteínas/genética , Fosforilação , Proteína Quinase C/genética , Proteínas Estruturais Virais/genética
11.
Arthritis Res Ther ; 19(1): 124, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28587618

RESUMO

BACKGROUND: Increasing evidences indicate that an unbalance between tryptases and their endogenous inhibitors, leading to an increased proteolytic activity, is implicated in the pathophysiology of rheumatoid arthritis. The aim of the present study was to evaluate the impact of tryptase inhibition on experimental arthritis. METHODS: Analysis of gene expression and regulation in the mouse knee joint was performed by RT-qPCR and in situ hybridization. Arthritis was induced in male C57BL/6 mice with mBSA/IL-1ß. Tryptase was inhibited by two approaches: a lentivirus-mediated heterologous expression of the human endogenous tryptase inhibitor, sperm-associated antigen 11B isoform C (hSPAG11B/C), or a chronic treatment with the synthetic tryptase inhibitor APC366. Several inflammatory parameters were evaluated, such as oedema formation, histopathology, production of IL-1ß, -6, -17A and CXCL1/KC, myeloperoxidase and tryptase-like activities. RESULTS: Spag11c was constitutively expressed in chondrocytes and cells from the synovial membrane in mice, but its expression did not change 7 days after the induction of arthritis, while tryptase expression and activity were upregulated. The intra-articular transduction of animals with the lentivirus phSPAG11B/C or the treatment with APC366 inhibited the increase of tryptase-like activity, the late phase of oedema formation, the production of IL-6 and CXCL1/KC. In contrast, neutrophil infiltration, degeneration of hyaline cartilage and erosion of subchondral bone were not affected. CONCLUSIONS: Tryptase inhibition was effective in inhibiting some inflammatory parameters associated to mBSA/IL-1ß-induced arthritis, notably late phase oedema formation and IL-6 production, but not neutrophil infiltration and joint degeneration. These results suggest that the therapeutic application of tryptase inhibitors to rheumatoid arthritis would be restrained to palliative care, but not as disease-modifying drugs. Finally, this study highlighted lentivirus-based gene delivery as an instrumental tool to study the relevance of target genes in synovial joint physiology and disease.


Assuntos
Técnicas de Transferência de Genes , Inflamação/metabolismo , Articulação do Joelho/metabolismo , Triptases/metabolismo , Animais , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Artrite Experimental/genética , Artrite Experimental/metabolismo , Artrite Experimental/terapia , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/terapia , Condrócitos/metabolismo , Citocinas/metabolismo , Dipeptídeos/farmacologia , Células HEK293 , Humanos , Inflamação/genética , Inflamação/terapia , Articulação do Joelho/efeitos dos fármacos , Articulação do Joelho/patologia , Lentivirus/genética , Masculino , Camundongos Endogâmicos C57BL , Membrana Sinovial/metabolismo , Triptases/antagonistas & inibidores , Triptases/genética
12.
J Gen Virol ; 97(12): 3215-3224, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27902378

RESUMO

Long-range axonal retrograde transport is a key mechanism for the cellular dissemination of neuroinvasive viruses, such as Borna disease virus (BDV), for which entry and egress sites are usually distant from the nucleus, where viral replication takes place. Although BDV is known to disseminate very efficiently in neurons, both in vivo and in primary cultures, the modalities of its axonal transport are still poorly characterized. In this work, we combined different methodological approaches, such as confocal microscopy and biochemical purification of endosomes, to study BDV retrograde transport. We demonstrate that BDV ribonucleoparticles (composed of the viral genomic RNA, nucleoprotein and phosphoprotein), as well as the matrix protein, are transported towards the nucleus into endocytic carriers. These specialized organelles, called signalling endosomes, are notably used for the retrograde transport of neurotrophins and activated growth factor receptors. Signalling endosomes have a neutral luminal pH and thereby offer protection against degradation during long-range transport. This particularity could allow the viral particles to be delivered intact to the cell body of neurons, avoiding their premature release in the cytoplasm.


Assuntos
Doença de Borna/virologia , Vírus da Doença de Borna/metabolismo , Endossomos/virologia , Neurônios/virologia , Animais , Doença de Borna/metabolismo , Vírus da Doença de Borna/genética , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Endossomos/metabolismo , Neurônios/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/genética , Vírion/metabolismo
14.
PLoS Pathog ; 12(4): e1005547, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27078877

RESUMO

Congenital infection by human cytomegalovirus (HCMV) is a leading cause of permanent sequelae of the central nervous system, including sensorineural deafness, cerebral palsies or devastating neurodevelopmental abnormalities (0.1% of all births). To gain insight on the impact of HCMV on neuronal development, we used both neural stem cells from human embryonic stem cells (NSC) and brain sections from infected fetuses and investigated the outcomes of infection on Peroxisome Proliferator-Activated Receptor gamma (PPARγ), a transcription factor critical in the developing brain. We observed that HCMV infection dramatically impaired the rate of neuronogenesis and strongly increased PPARγ levels and activity. Consistent with these findings, levels of 9-hydroxyoctadecadienoic acid (9-HODE), a known PPARγ agonist, were significantly increased in infected NSCs. Likewise, exposure of uninfected NSCs to 9-HODE recapitulated the effect of infection on PPARγ activity. It also increased the rate of cells expressing the IE antigen in HCMV-infected NSCs. Further, we demonstrated that (1) pharmacological activation of ectopically expressed PPARγ was sufficient to induce impaired neuronogenesis of uninfected NSCs, (2) treatment of uninfected NSCs with 9-HODE impaired NSC differentiation and (3) treatment of HCMV-infected NSCs with the PPARγ inhibitor T0070907 restored a normal rate of differentiation. The role of PPARγ in the disease phenotype was strongly supported by the immunodetection of nuclear PPARγ in brain germinative zones of congenitally infected fetuses (N = 20), but not in control samples. Altogether, our findings reveal a key role for PPARγ in neurogenesis and in the pathophysiology of HCMV congenital infection. They also pave the way to the identification of PPARγ gene targets in the infected brain.


Assuntos
Infecções por Citomegalovirus/congênito , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/metabolismo , Células-Tronco Neurais/virologia , Neurogênese/fisiologia , PPAR gama/metabolismo , Western Blotting , Diferenciação Celular/fisiologia , Imunoprecipitação da Cromatina , Cromatografia Líquida de Alta Pressão , Imunofluorescência , Humanos , Microscopia Eletrônica de Transmissão , Células-Tronco Neurais/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem
15.
FASEB J ; 30(4): 1523-33, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26700735

RESUMO

To favor their replication, viruses express proteins that target diverse mammalian cellular pathways. Due to the limited size of many viral genomes, such proteins are endowed with multiple functions, which require targeting to different subcellular compartments. One salient example is the X protein of Borna disease virus, which is expressed both at the mitochondria and in the nucleus. Moreover, we recently demonstrated that mitochondrial X protein is neuroprotective. In this study, we sought to examine the mechanisms whereby the X protein transits between subcellular compartments and to define its localization signals, to enhance its mitochondrial accumulation and thus, potentially, its neuroprotective activity. We transfected plasmids expressing fusion proteins bearing different domains of X fused to enhanced green fluorescent protein (eGFP) and compared their subcellular localization to that of eGFP. We observed that the 5-16 domain of X was responsible for both nuclear export and mitochondrial targeting and identified critical residues for mitochondrial localization. We next took advantage of these findings and constructed mutant X proteins that were targeted only to the mitochondria. Such mutants exhibited enhanced neuroprotective properties in compartmented cultures of neurons grown in microfluidic chambers, thereby confirming the parallel between mitochondrial accumulation of the X protein and its neuroprotective potential.-Ferré C. A., Davezac, N., Thouard, A., Peyrin, J. M., Belenguer, P., Miquel, M.-C., Gonzalez-Dunia, D., Szelechowski, M. Manipulation of the N-terminal sequence of the Borna disease virus X protein improves its mitochondrial targeting and neuroprotective potential.


Assuntos
Vírus da Doença de Borna/genética , Mitocôndrias/metabolismo , Proteínas Virais/genética , Sequência de Aminoácidos , Animais , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Axônios/efeitos dos fármacos , Axônios/metabolismo , Western Blotting , Vírus da Doença de Borna/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Sinais de Localização Nuclear/genética , Homologia de Sequência de Aminoácidos , Proteínas Virais/metabolismo
16.
PLoS Pathog ; 11(4): e1004859, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25923687

RESUMO

It is well established that persistent viral infection may impair cellular function of specialized cells without overt damage. This concept, when applied to neurotropic viruses, may help to understand certain neurologic and neuropsychiatric diseases. Borna disease virus (BDV) is an excellent example of a persistent virus that targets the brain, impairs neural functions without cell lysis, and ultimately results in neurobehavioral disturbances. Recently, we have shown that BDV infects human neural progenitor cells (hNPCs) and impairs neurogenesis, revealing a new mechanism by which BDV may interfere with brain function. Here, we sought to identify the viral proteins and molecular pathways that are involved. Using lentiviral vectors for expression of the bdv-p and bdv-x viral genes, we demonstrate that the phosphoprotein P, but not the X protein, diminishes human neurogenesis and, more particularly, GABAergic neurogenesis. We further reveal a decrease in pro-neuronal factors known to be involved in neuronal differentiation (ApoE, Noggin, TH and Scg10/Stathmin2), demonstrating that cellular dysfunction is associated with impairment of specific components of the molecular program that controls neurogenesis. Our findings thus provide the first evidence that a viral protein impairs GABAergic human neurogenesis, a process that is dysregulated in several neuropsychiatric disorders. They improve our understanding of the mechanisms by which a persistent virus may interfere with brain development and function in the adult.


Assuntos
Vírus da Doença de Borna/fisiologia , Regulação para Baixo , Neurônios GABAérgicos/metabolismo , Interações Hospedeiro-Patógeno , Neurogênese , Fosfoproteínas/metabolismo , Proteínas Estruturais Virais/metabolismo , Transporte Ativo do Núcleo Celular , Apolipoproteínas E/antagonistas & inibidores , Apolipoproteínas E/metabolismo , Biomarcadores/química , Biomarcadores/metabolismo , Doença de Borna/metabolismo , Doença de Borna/patologia , Doença de Borna/virologia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Proliferação de Células , Células Cultivadas , França , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/patologia , Neurônios GABAérgicos/virologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Células-Tronco Embrionárias Humanas/virologia , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Estatmina , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Estruturais Virais/genética
17.
J Virol ; 89(11): 5996-6008, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25810554

RESUMO

UNLABELLED: Understanding the modalities of interaction of neurotropic viruses with their target cells represents a major challenge that may improve our knowledge of many human neurological disorders for which viral origin is suspected. Borna disease virus (BDV) represents an ideal model to analyze the molecular mechanisms of viral persistence in neurons and its consequences for neuronal homeostasis. It is now established that BDV ensures its long-term maintenance in infected cells through a stable interaction of viral components with the host cell chromatin, in particular, with core histones. This has led to our hypothesis that such an interaction may trigger epigenetic changes in the host cell. Here, we focused on histone acetylation, which plays key roles in epigenetic regulation of gene expression, notably for neurons. We performed a comparative analysis of histone acetylation patterns of neurons infected or not infected by BDV, which revealed that infection decreases histone acetylation on selected lysine residues. We showed that the BDV phosphoprotein (P) is responsible for these perturbations, even when it is expressed alone independently of the viral context, and that this action depends on its phosphorylation by protein kinase C. We also demonstrated that BDV P inhibits cellular histone acetyltransferase activities. Finally, by pharmacologically manipulating cellular acetylation levels, we observed that inhibiting cellular acetyl transferases reduces viral replication in cell culture. Our findings reveal that manipulation of cellular epigenetics by BDV could be a means to modulate viral replication and thus illustrate a fascinating example of virus-host cell interaction. IMPORTANCE: Persistent DNA viruses often subvert the mechanisms that regulate cellular chromatin dynamics, thereby benefitting from the resulting epigenetic changes to create a favorable milieu for their latent and persistent states. Here, we reasoned that Borna disease virus (BDV), the only RNA virus known to durably persist in the nucleus of infected cells, notably neurons, might employ a similar mechanism. In this study, we uncovered a novel modality of virus-cell interaction in which BDV phosphoprotein inhibits cellular histone acetylation by interfering with histone acetyltransferase activities. Manipulation of cellular histone acetylation is accompanied by a modulation of viral replication, revealing a perfect adaptation of this "ancient" virus to its host that may favor neuronal persistence and limit cellular damage.


Assuntos
Vírus da Doença de Borna/fisiologia , Epigênese Genética , Interações Hospedeiro-Patógeno , Neurônios/virologia , Fosfoproteínas/metabolismo , Proteínas Estruturais Virais/metabolismo , Replicação Viral , Acetilação , Animais , Células Cultivadas , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Ratos Sprague-Dawley
18.
Nat Commun ; 5: 5181, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25333748

RESUMO

Mitochondrial dysfunction is a common feature of many neurodegenerative disorders, notably Parkinson's disease. Consequently, agents that protect mitochondria have strong therapeutic potential. Here, we sought to divert the natural strategy used by Borna disease virus (BDV) to replicate in neurons without causing cell death. We show that the BDV X protein has strong axoprotective properties, thereby protecting neurons from degeneration both in tissue culture and in an animal model of Parkinson's disease, even when expressed alone outside of the viral context. We also show that intranasal administration of a cell-permeable peptide derived from the X protein is neuroprotective. We establish that both the X protein and the X-derived peptide act by buffering mitochondrial damage and inducing enhanced mitochondrial filamentation. Our results open the way to novel therapies for neurodegenerative diseases by targeting mitochondrial dynamics and thus preventing the earliest steps of neurodegenerative processes in axons.


Assuntos
Mitocôndrias/patologia , Doenças Neurodegenerativas/prevenção & controle , Doença de Parkinson/prevenção & controle , Peptídeos/química , Proteínas não Estruturais Virais/química , Animais , Axônios/metabolismo , Axônios/fisiologia , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Microfluídica , Microscopia Confocal , Microscopia de Fluorescência , Doenças Neurodegenerativas/virologia , Neurônios/metabolismo , Doença de Parkinson/virologia , Fosforilação , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Rotenona/química
19.
Virologie (Montrouge) ; 18(4): 187-200, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065931

RESUMO

Viruses have to meet the challenge to cope with the limited capacity of renewal of neuronal cells in order to allow their replication and persistence in the central nervous system (CNS). Accordingly, many neurotropic viruses establish latency to optimize their maintenance in the CNS. Bornaviruses have evolved a different and original strategy to persist in neurons, which involves an active replication without associated cytopathic effect. Despite their small genomes and limited number of proteins, bornaviruses hijack multiple signaling pathways, leading to escape from immune surveillance or protection of cells against apoptosis. Long term persistence has even led to integration of genome elements within the host cell genome, leading to "fossil bornaviruses" in a wide range of vertebrate species. Hence, bornaviruses represent the ideal host-cell adaptation example and can thus be considered as the "best enemy" for its hosts.

20.
J Vis Exp ; (82): 50833, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24326926

RESUMO

Adenovirus (Ad) derived vectors have been widely used for short or long-term gene transfer, both for gene therapy and vaccine applications. Because of the frequent pre-existing immunity against the classically used human adenovirus type 5, canine adenovirus type 2 (CAV2) has been proposed as an alternative vector for human gene transfer. The well-characterized biology of CAV2, together with its ease of genetic manipulation, offer major advantages, notably for gene transfer into the central nervous system, or for inducing a wide range of protective immune responses, from humoral to cellular immunity. Nowadays, CAV2 represents one of the most appealing nonhuman adenovirus for use as a vaccine vector. This protocol describes a simple method to construct, produce and titer recombinant CAV2 vectors. After cloning the expression cassette of the gene of interest into a shuttle plasmid, the recombinant genomic plasmid is obtained by homologous recombination in the E. coli BJ5183 bacterial strain. The resulting genomic plasmid is then transfected into canine kidney cells expressing the complementing CAV2-E1 genes (DK-E1). A viral amplification enables the production of a large viral stock, which is purified by ultracentrifugation through cesium chloride gradients and desalted by dialysis. The resulting viral suspension routinely has a titer of over 10(10) infectious particles per ml and can be directly administrated in vivo.


Assuntos
Adenovirus Caninos/fisiologia , Adenovirus Caninos/genética , Adenovirus Caninos/crescimento & desenvolvimento , Animais , Linhagem Celular , Cães , Escherichia coli/genética , Vetores Genéticos/genética , Rim/citologia , Rim/virologia , Plasmídeos/genética , Transfecção , Virologia/métodos , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...