Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 14(3): e20133, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34464512

RESUMO

We performed genomic analyses on species and varieties of the genus Citrus to identify several determinants of domestication, based on the pattern of pummelo [Citrus maxima (Burr. f) Merr] and mandarin (Citrus reticulata Blanco) admixture into the ancestral genome, as well as population genetic tests at smaller scales. Domestication impacted gene families regulating pivotal components of citrus flavor (such as acidity) because in edible mandarin varieties, chromosome areas with negative Tajimas values were enriched with genes associated with the regulation of citric acid. Detection of sweeps in edible mandarins that diverged from wild relatives indicated that domestication reduced chemical defenses involving cyanogenesis and alkaloid synthesis, thus increasing palatability. Also, a cluster of SAUR genes in domesticated mandarins derived from the pummelo genome appears to contain candidate genes controlling fruit size. Similarly, conserved stretches of pure mandarin areas were likely important as well for domestication, as, for example, a fragment in chromosome 1 that is involved in the apomictic reproduction of most edible mandarins. Interestingly, our results also support the hypothesis that various genes subject to selective pressure during evolution or derived from whole genome duplication events later became potential targets of domestication.


Assuntos
Citrus , Citrus/genética , Domesticação , Genoma de Planta , Genômica , Filogenia
2.
Plant Genome ; 14(3): e20104, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34275210

RESUMO

We performed genomic analyses on wild species of the genus Citrus to identify major determinants of evolution. The most notable effect occurred on the pathogen-defense genes, as observed in many other plant genera. The gene space was also characterized by changes in gene families intimately related to relevant biochemical properties of citrus fruit, such as pectin modifying enzymes, HDR (4-hydroxy-3-methylbut-2-enyl diphosphate reductase) genes, and O-methyltransferases. Citrus fruits are highly abundant on pectins and secondary metabolites such as terpenoids and flavonoids, the targets of these families. Other gene types under positive selection, expanded through tandem duplications and retained as triplets from whole genome duplications, codified for purple acid phosphatases and MATE-efflux proteins. Although speciation has not been especially rapid in the genus, analyses of selective pressure at the codon level revealed that the extant species evolved from the ancestral citrus radiation show signatures of pervasive adaptive evolution and is therefore potentially responsible for the vast phenotypic differences observed among current species.


Assuntos
Citrus , Citrus/química , Citrus/genética , Flavonoides , Genômica
3.
Phytopathology ; 111(5): 862-869, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33258410

RESUMO

It is well described that viral infections stimulate the emission of plant volatiles able to recruit viral vectors thereby promoting virus spread. In contrast, much less is known on the effects that emitted volatiles may have on the metabolism of healthy neighboring plants, which are potential targets for new infections through vector transmission. Watermelon mosaic virus (WMV) (genus Potyvirus, family Potyviridae) is an aphid-transmitted virus endemic in cucurbit crops worldwide. We have compared gene expression profiles of WMV-infected melon plants with those of healthy or healthy-but-cohabited-with-infected plants. Pathogenesis-related (PR) and small heat shock protein encoding genes were deregulated in cohabited plants, and PR deregulation depended on the distance to the infected plant. The signaling was short distance in the experimental conditions used, and cohabiting had a moderate effect on the plant susceptibility to WMV. Static headspace experiments showed that benzaldehyde and γ-butyrolactone were significantly over-emitted by WMV-infected plants. Altogether, our data suggest that perception of a volatile signal encoded by WMV-infected tissues triggers a response to prepare healthy tissues or/and healthy neighboring plants for the incoming infections.


Assuntos
Afídeos , Cucurbitaceae , Vírus de Plantas , Animais , Doenças das Plantas , Transcriptoma
4.
BMC Plant Biol ; 20(1): 34, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959115

RESUMO

BACKGROUND: IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like signaling peptides and the associated HAE (HAESA)-like family of receptor kinases were originally reported in the model plant Arabidopsis thaliana (Arabidopsis) to be deeply involved in the regulation of abscission. Actually, IDA peptides, as cell-to-cell communication elements, appear to be implicated in many developmental processes that rely on cell separation events, and even in the responses to abiotic stresses. However, the knowledge related to the molecular machinery regulating abscission in economically important crops is scarce. In this work, we determined the conservation and phylogeny of the IDA-like and HAE-like gene families in relevant species of the Solanaceae family and analyzed the expression of these genes in the allopolyploid Nicotiana benthamiana, in order to identify members involved in abscission, stem growth and in the response to drought conditions. RESULTS: The phylogenetic relationships among the IDA-like members of the Solanaceae studied, grouped the two pairs of NbenIDA1 and NbenIDA2 protein homeologs with the Arabidopsis prepropeptides related to abscission. Analysis of promoter regions searching for regulatory elements showed that these two pairs of homeologs contained both hormonal and drought response elements, although NbenIDA2A lacked the hormonal regulatory elements. Expression analyses showed that the pair of NbenIDA1 homeologs were upregulated during corolla abscission. NbenIDA1 and NbenIDA2 pairs showed tissue differential expression under water stress conditions, since NbenIDA1 homeologs were highly expressed in stressed leaves while NbenIDA2 homeologs, especially NbenIDA2B, were highly expressed in stressed roots. In non-stressed active growing plants, nodes and internodes were the tissues with the highest expression levels of all members of the IDA-like family and their putative HAE-like receptors. CONCLUSION: Our results suggest that the pair of NbenIDA1 homeologs are involved in the natural process of corolla abscission while both pairs of NbenIDA1 and NbenIDA2 homeologs are implicated in the response to water stress. The data also suggest that IDA peptides may be important during stem growth and development. These results provide additional evidence that the functional module formed by IDA peptides and its receptor kinases, as defined in Arabidopsis, may also be conserved in Solanaceae.


Assuntos
Flores/genética , Nicotiana/genética , Proteínas de Plantas/genética , Caules de Planta/genética , Flores/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Caules de Planta/crescimento & desenvolvimento , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Água/metabolismo
5.
G3 (Bethesda) ; 8(5): 1461-1474, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29559535

RESUMO

Conifers are the dominant plant species throughout the high latitude boreal forests as well as some lower latitude temperate forests of North America, Europe, and Asia. As such, they play an integral economic and ecological role across much of the world. This study focused on the characterization of needle transcriptomes from four ecologically important and understudied North American white pines within the Pinus subgenus Strobus The populations of many Strobus species are challenged by native and introduced pathogens, native insects, and abiotic factors. RNA from the needles of western white pine (Pinus monticola), limber pine (Pinus flexilis), whitebark pine (Pinus albicaulis), and sugar pine (Pinus lambertiana) was sampled, Illumina short read sequenced, and de novo assembled. The assembled transcripts and their subsequent structural and functional annotations were processed through custom pipelines to contend with the challenges of non-model organism transcriptome validation. Orthologous gene family analysis of over 58,000 translated transcripts, implemented through Tribe-MCL, estimated the shared and unique gene space among the four species. This revealed 2025 conserved gene families, of which 408 were aligned to estimate levels of divergence and reveal patterns of selection. Specific candidate genes previously associated with drought tolerance and white pine blister rust resistance in conifers were investigated.


Assuntos
Pinus/genética , Transcriptoma/genética , Sequência de Aminoácidos , Sequência Conservada/genética , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Genoma de Planta , Geografia , Anotação de Sequência Molecular , Família Multigênica , América do Norte , Proteínas de Plantas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Seleção Genética , Análise de Sequência de RNA , Especificidade da Espécie
6.
G3 (Bethesda) ; 7(9): 3157-3167, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28751502

RESUMO

A reference genome sequence for Pseudotsuga menziesii var. menziesii (Mirb.) Franco (Coastal Douglas-fir) is reported, thus providing a reference sequence for a third genus of the family Pinaceae. The contiguity and quality of the genome assembly far exceeds that of other conifer reference genome sequences (contig N50 = 44,136 bp and scaffold N50 = 340,704 bp). Incremental improvements in sequencing and assembly technologies are in part responsible for the higher quality reference genome, but it may also be due to a slightly lower exact repeat content in Douglas-fir vs. pine and spruce. Comparative genome annotation with angiosperm species reveals gene-family expansion and contraction in Douglas-fir and other conifers which may account for some of the major morphological and physiological differences between the two major plant groups. Notable differences in the size of the NDH-complex gene family and genes underlying the functional basis of shade tolerance/intolerance were observed. This reference genome sequence not only provides an important resource for Douglas-fir breeders and geneticists but also sheds additional light on the evolutionary processes that have led to the divergence of modern angiosperms from the more ancient gymnosperms.


Assuntos
Genoma de Planta , Fotossíntese/genética , Pinaceae/genética , Pinaceae/metabolismo , Pseudotsuga/genética , Pseudotsuga/metabolismo , Sequenciamento Completo do Genoma , Adaptação Biológica/genética , Biologia Computacional , Evolução Molecular , Duplicação Gênica , Redes Reguladoras de Genes , Genômica , Anotação de Sequência Molecular , Família Multigênica , Filogenia , Pinaceae/classificação , Proteômica/métodos , Pseudotsuga/classificação , Sequências Repetitivas de Ácido Nucleico
7.
G3 (Bethesda) ; 6(12): 3787-3802, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27799338

RESUMO

Sugar pine (Pinus lambertiana Douglas) is within the subgenus Strobus with an estimated genome size of 31 Gbp. Transcriptomic resources are of particular interest in conifers due to the challenges presented in their megagenomes for gene identification. In this study, we present the first comprehensive survey of the P. lambertiana transcriptome through deep sequencing of a variety of tissue types to generate more than 2.5 billion short reads. Third generation, long reads generated through PacBio Iso-Seq have been included for the first time in conifers to combat the challenges associated with de novo transcriptome assembly. A technology comparison is provided here to contribute to the otherwise scarce comparisons of second and third generation transcriptome sequencing approaches in plant species. In addition, the transcriptome reference was essential for gene model identification and quality assessment in the parallel project responsible for sequencing and assembly of the entire genome. In this study, the transcriptomic data were also used to address questions surrounding lineage-specific Dicer-like proteins in conifers. These proteins play a role in the control of transposable element proliferation and the related genome expansion in conifers.


Assuntos
Genes de Plantas , Genoma de Planta , Genômica , Pinus/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Variação Genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Anotação de Sequência Molecular , Família Multigênica , Ribonuclease III/genética , Transcriptoma
8.
Genetics ; 204(4): 1613-1626, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27794028

RESUMO

Until very recently, complete characterization of the megagenomes of conifers has remained elusive. The diploid genome of sugar pine (Pinus lambertiana Dougl.) has a highly repetitive, 31 billion bp genome. It is the largest genome sequenced and assembled to date, and the first from the subgenus Strobus, or white pines, a group that is notable for having the largest genomes among the pines. The genome represents a unique opportunity to investigate genome "obesity" in conifers and white pines. Comparative analysis of P. lambertiana and P. taeda L. reveals new insights on the conservation, age, and diversity of the highly abundant transposable elements, the primary factor determining genome size. Like most North American white pines, the principal pathogen of P. lambertiana is white pine blister rust (Cronartium ribicola J.C. Fischer ex Raben.). Identification of candidate genes for resistance to this pathogen is of great ecological importance. The genome sequence afforded us the opportunity to make substantial progress on locating the major dominant gene for simple resistance hypersensitive response, Cr1 We describe new markers and gene annotation that are both tightly linked to Cr1 in a mapping population, and associated with Cr1 in unrelated sugar pine individuals sampled throughout the species' range, creating a solid foundation for future mapping. This genomic variation and annotated candidate genes characterized in our study of the Cr1 region are resources for future marker-assisted breeding efforts as well as for investigations of fundamental mechanisms of invasive disease and evolutionary response.


Assuntos
Genoma de Planta , Pinus/genética , Basidiomycota/patogenicidade , Elementos de DNA Transponíveis , Variação Genética , Tamanho do Genoma , Pinus/imunologia , Pinus/microbiologia , Imunidade Vegetal/genética
9.
Plant J ; 87(5): 507-32, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27145194

RESUMO

The Persian walnut (Juglans regia L.), a diploid species native to the mountainous regions of Central Asia, is the major walnut species cultivated for nut production and is one of the most widespread tree nut species in the world. The high nutritional value of J. regia nuts is associated with a rich array of polyphenolic compounds, whose complete biosynthetic pathways are still unknown. A J. regia genome sequence was obtained from the cultivar 'Chandler' to discover target genes and additional unknown genes. The 667-Mbp genome was assembled using two different methods (SOAPdenovo2 and MaSuRCA), with an N50 scaffold size of 464 955 bp (based on a genome size of 606 Mbp), 221 640 contigs and a GC content of 37%. Annotation with MAKER-P and other genomic resources yielded 32 498 gene models. Previous studies in walnut relying on tissue-specific methods have only identified a single polyphenol oxidase (PPO) gene (JrPPO1). Enabled by the J. regia genome sequence, a second homolog of PPO (JrPPO2) was discovered. In addition, about 130 genes in the large gallate 1-ß-glucosyltransferase (GGT) superfamily were detected. Specifically, two genes, JrGGT1 and JrGGT2, were significantly homologous to the GGT from Quercus robur (QrGGT), which is involved in the synthesis of 1-O-galloyl-ß-d-glucose, a precursor for the synthesis of hydrolysable tannins. The reference genome for J. regia provides meaningful insight into the complex pathways required for the synthesis of polyphenols. The walnut genome sequence provides important tools and methods to accelerate breeding and to facilitate the genetic dissection of complex traits.


Assuntos
Genoma de Planta/genética , Juglans/genética , Proteínas de Plantas/genética , Polifenóis/metabolismo , Catecol Oxidase/metabolismo
10.
Proc Natl Acad Sci U S A ; 109(29): 11872-7, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22753475

RESUMO

We report the genome sequence of melon, an important horticultural crop worldwide. We assembled 375 Mb of the double-haploid line DHL92, representing 83.3% of the estimated melon genome. We predicted 27,427 protein-coding genes, which we analyzed by reconstructing 22,218 phylogenetic trees, allowing mapping of the orthology and paralogy relationships of sequenced plant genomes. We observed the absence of recent whole-genome duplications in the melon lineage since the ancient eudicot triplication, and our data suggest that transposon amplification may in part explain the increased size of the melon genome compared with the close relative cucumber. A low number of nucleotide-binding site-leucine-rich repeat disease resistance genes were annotated, suggesting the existence of specific defense mechanisms in this species. The DHL92 genome was compared with that of its parental lines allowing the quantification of sequence variability in the species. The use of the genome sequence in future investigations will facilitate the understanding of evolution of cucurbits and the improvement of breeding strategies.


Assuntos
Evolução Biológica , Cucumis melo/genética , Genoma de Planta/genética , Filogenia , Sequência de Bases , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Elementos de DNA Transponíveis/genética , Resistência à Doença/genética , Genes Duplicados/genética , Genes de Plantas/genética , Genômica/métodos , Funções Verossimilhança , Modelos Genéticos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
11.
Mol Plant Microbe Interact ; 25(1): 107-18, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21970693

RESUMO

Resistance to Watermelon mosaic virus (WMV) in melon (Cucumis melo L.) accession TGR-1551 is characterized by a significant reduction in virus titer, and is inherited as a recessive, loss-of-susceptibility allele. We measured virus RNA accumulation in TGR-1551 plants and a susceptible control ('Tendral') by real-time quantitative polymerase chain reaction, and also profiled the expression of 17,443 unigenes represented on a melon microarray over a 15-day time course. The virus accumulated to higher levels in cotyledons of the resistant variety up to 9 days postinoculation (dpi) but, thereafter, levels increased in the susceptible variety while those in the resistant variety declined. Microarray experiments looking at the early response to infection (1 and 3 dpi), as well as responses after 7 and 15 dpi, revealed more profound transcriptomic changes in resistant plants than susceptible ones. The gene expression profiles revealed deep and extensive transcriptome remodeling in TGR-1551 plants, often involving genes with pathogen response functions. Overall, our data suggested that resistance to WMV in TGR-1551 melon plants is associated with a defense response, which contrasts with the recessive nature of the resistance trait.


Assuntos
Cucumis melo/genética , Doenças das Plantas/virologia , Imunidade Vegetal , Potyvirus/fisiologia , Transcriptoma/genética , Citrullus/virologia , Análise por Conglomerados , Cotilédone/genética , Cotilédone/virologia , Cucumis melo/imunologia , Cucumis melo/virologia , Perfilação da Expressão Gênica , Genes de Plantas/genética , Genótipo , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , RNA de Plantas/genética , Plântula/genética , Plântula/imunologia , Plântula/virologia , Fatores de Tempo , Ativação Transcricional/genética , Carga Viral
12.
BMC Genomics ; 12: 393, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21812964

RESUMO

BACKGROUND: Melon (Cucumis melo L.) is a commercially important fruit crop that is cultivated worldwide. The melon research community has recently benefited from the determination of a complete draft genome sequence and the development of associated genomic tools, which have allowed us to focus on small RNAs (sRNAs). These are short, non-coding RNAs 21-24 nucleotides in length with diverse physiological roles. In plants, they regulate gene expression and heterochromatin assembly, and control protection against virus infection. Much remains to be learned about the role of sRNAs in melon. RESULTS: We constructed 10 sRNA libraries from two stages of developing ovaries, fruits and photosynthetic cotyledons infected with viruses, and carried out high-throughput pyrosequencing. We catalogued and analysed the melon sRNAs, resulting in the identification of 26 known miRNA families (many conserved with other species), the prediction of 84 melon-specific miRNA candidates, the identification of trans-acting siRNAs, and the identification of chloroplast, mitochondrion and transposon-derived sRNAs. In silico analysis revealed more than 400 potential targets for the conserved and novel miRNAs. CONCLUSION: We have discovered and analysed a large number of conserved and melon-specific sRNAs, including miRNAs and their potential target genes. This provides insight into the composition and function of the melon small RNAome, and paves the way towards an understanding of sRNA-mediated processes that regulate melon fruit development and melon-virus interactions.


Assuntos
Cucumis melo/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA de Plantas/genética , Pequeno RNA não Traduzido/genética , Sequência de Bases , Carmovirus/fisiologia , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/imunologia , Cotilédone/virologia , Cucumis melo/crescimento & desenvolvimento , Cucumis melo/imunologia , Cucumis melo/virologia , Resistência à Doença/genética , Biblioteca Gênica , MicroRNAs/genética , Fotossíntese/genética , Polinização/genética , Potyvirus/fisiologia , Especificidade da Espécie , Transcriptoma
13.
BMC Genomics ; 10: 467, 2009 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-19821986

RESUMO

BACKGROUND: Melon (Cucumis melo) is a horticultural specie of significant nutritional value, which belongs to the Cucurbitaceae family, whose economic importance is second only to the Solanaceae. Its small genome of approx. 450 Mb coupled to the high genetic diversity has prompted the development of genetic tools in the last decade. However, the unprecedented existence of a transcriptomic approaches in melon, highlight the importance of designing new tools for high-throughput analysis of gene expression. RESULTS: We report the construction of an oligo-based microarray using a total of 17,510 unigenes derived from 33,418 high-quality melon ESTs. This chip is particularly enriched with genes that are expressed in fruit and during interaction with pathogens. Hybridizations for three independent experiments allowed the characterization of global gene expression profiles during fruit ripening, as well as in response to viral and fungal infections in plant cotyledons and roots, respectively. Microarray construction, statistical analyses and validation together with functional-enrichment analysis are presented in this study. CONCLUSION: The platform validation and enrichment analyses shown in our study indicate that this oligo-based microarray is amenable for future genetic and functional genomic studies of a wide range of experimental conditions in melon.


Assuntos
Cucumis melo/genética , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Cucumis melo/fisiologia , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Frutas/genética , Frutas/fisiologia , Biblioteca Gênica , Genes de Plantas , Genoma de Planta , Análise de Sequência de DNA
14.
Virology ; 392(2): 203-14, 2009 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-19665162

RESUMO

Plant virus infection involves the production of viral small RNAs (vsRNAs) with the potential to associate with distinct Argonaute (AGO)-containing silencing complexes and mediate diverse silencing effects on RNA and chromatin. We used multiplexed, high-throughput pyrosequencing to profile populations of vsRNAs from plants infected with viruses from different genera. Sense and antisense vsRNAs of 20 to 24 nucleotides (nts) spread throughout the entire viral genomes in an overlapping configuration; virtually all genomic nucleotide positions were represented in the data set. We present evidence to suggest that every genomic position could be a putative cleavage site for vsRNA formation, although viral genomes contain specific regions that serve as preferential sources of vsRNA production. Hotspots for vsRNAs of 21-, 22-, and 24-nt usually coincide in the same genomic regions, indicating similar target affinities among Dicer-like (DCL) enzymes. In the light of our results, the overall contribution of perfectly base paired double-stranded RNA and imperfectly base paired structures within single-stranded RNA to vsRNA formation is discussed. Our census of vsRNAs extends the current view of the distribution and composition of vsRNAs in virus-infected plants, and contributes to a better understanding of vsRNA biogenesis.


Assuntos
Genoma Viral , Vírus de Plantas/genética , RNA Viral/genética , Sequência de Bases , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Vírus de RNA/genética , Análise de Sequência de RNA
15.
BMC Plant Biol ; 9: 90, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19604363

RESUMO

BACKGROUND: There are few genomic tools available in melon (Cucumis melo L.), a member of the Cucurbitaceae, despite its importance as a crop. Among these tools, genetic maps have been constructed mainly using marker types such as simple sequence repeats (SSR), restriction fragment length polymorphisms (RFLP) and amplified fragment length polymorphisms (AFLP) in different mapping populations. There is a growing need for saturating the genetic map with single nucleotide polymorphisms (SNP), more amenable for high throughput analysis, especially if these markers are located in gene coding regions, to provide functional markers. Expressed sequence tags (ESTs) from melon are available in public databases, and resequencing ESTs or validating SNPs detected in silico are excellent ways to discover SNPs. RESULTS: EST-based SNPs were discovered after resequencing ESTs between the parental lines of the PI 161375 (SC) x 'Piel de sapo' (PS) genetic map or using in silico SNP information from EST databases. In total 200 EST-based SNPs were mapped in the melon genetic map using a bin-mapping strategy, increasing the map density to 2.35 cM/marker. A subset of 45 SNPs was used to study variation in a panel of 48 melon accessions covering a wide range of the genetic diversity of the species. SNP analysis correctly reflected the genetic relationships compared with other marker systems, being able to distinguish all the accessions and cultivars. CONCLUSION: This is the first example of a genetic map in a cucurbit species that includes a major set of SNP markers discovered using ESTs. The PI 161375 x 'Piel de sapo' melon genetic map has around 700 markers, of which more than 500 are gene-based markers (SNP, RFLP and SSR). This genetic map will be a central tool for the construction of the melon physical map, the step prior to sequencing the complete genome. Using the set of SNP markers, it was possible to define the genetic relationships within a collection of forty-eight melon accessions as efficiently as with SSR markers, and these markers may also be useful for cultivar identification in Occidental melon varieties.


Assuntos
Mapeamento Cromossômico , Cucumis melo/genética , Etiquetas de Sequências Expressas , Polimorfismo de Nucleotídeo Único , DNA de Plantas/genética , Frequência do Gene , Marcadores Genéticos , Genoma de Planta , Genótipo , Análise de Sequência de DNA
16.
Plant J ; 56(5): 716-27, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18643998

RESUMO

Translation initiation factors are universal determinants of plant susceptibility to RNA viruses, but the underlying mechanisms are poorly understood. Here, we show that a sequence in the 3' untranslated region (3'-UTR) of a viral genome that is responsible for overcoming plant eIF4E-mediated resistance (virulence determinant) functions as a 3' cap-independent translational enhancer (3'-CITE). The virus/plant pair studied here is Melon necrotic spot virus (MNSV) and melon, for which a recessive resistance controlled by melon eIF4E was previously described. Chimeric viruses between virulent and avirulent isolates enabled us to map the virulence and avirulence determinants to 49 and 26 nucleotides, respectively. The translational efficiency of a luc reporter gene flanked by 5'- and 3'-UTRs from virulent, avirulent and chimeric viruses was analysed in vitro, in wheatgerm extract, and in vivo, in melon protoplasts, showing that: (i) the virulence determinant mediates the efficient cap-independent translation in vitro and in vivo; (ii) the avirulence determinant was able to promote efficient cap-independent translation in vitro, but only when eIF4E from susceptible melon was added in trans, and, coherently, only in protoplasts of susceptible melon, but not in the protoplasts of resistant melon; (iii) these activities required the 5'-UTR of MNSV in cis. Thus, the virulence and avirulence determinants function as 3'-CITEs. The activity of these 3'-CITEs was host specific, suggesting that an inefficient interaction between the viral 3'-CITE of the avirulent isolate and eIF4E of resistant melon impedes the correct formation of the translation initiation complex at the viral RNA ends, thereby leading to resistance.


Assuntos
Carmovirus/genética , Cucumis/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Proteínas de Plantas/metabolismo , Biossíntese de Proteínas , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Sequência de Bases , Carmovirus/patogenicidade , Cucumis/virologia , Fator de Iniciação 4E em Eucariotos/genética , Genes de Plantas , Genoma Viral , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Doenças das Plantas/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Mutação Puntual , Capuzes de RNA , RNA Viral/genética , Alinhamento de Sequência , Virulência
17.
BMC Genomics ; 8: 306, 2007 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-17767721

RESUMO

BACKGROUND: Melon (Cucumis melo L.) is one of the most important fleshy fruits for fresh consumption. Despite this, few genomic resources exist for this species. To facilitate the discovery of genes involved in essential traits, such as fruit development, fruit maturation and disease resistance, and to speed up the process of breeding new and better adapted melon varieties, we have produced a large collection of expressed sequence tags (ESTs) from eight normalized cDNA libraries from different tissues in different physiological conditions. RESULTS: We determined over 30,000 ESTs that were clustered into 16,637 non-redundant sequences or unigenes, comprising 6,023 tentative consensus sequences (contigs) and 10,614 unclustered sequences (singletons). Many potential molecular markers were identified in the melon dataset: 1,052 potential simple sequence repeats (SSRs) and 356 single nucleotide polymorphisms (SNPs) were found. Sixty-nine percent of the melon unigenes showed a significant similarity with proteins in databases. Functional classification of the unigenes was carried out following the Gene Ontology scheme. In total, 9,402 unigenes were mapped to one or more ontology. Remarkably, the distributions of melon and Arabidopsis unigenes followed similar tendencies, suggesting that the melon dataset is representative of the whole melon transcriptome. Bioinformatic analyses primarily focused on potential precursors of melon micro RNAs (miRNAs) in the melon dataset, but many other genes potentially controlling disease resistance and fruit quality traits were also identified. Patterns of transcript accumulation were characterised by Real-Time-qPCR for 20 of these genes. CONCLUSION: The collection of ESTs characterised here represents a substantial increase on the genetic information available for melon. A database (MELOGEN) which contains all EST sequences, contig images and several tools for analysis and data mining has been created. This set of sequences constitutes also the basis for an oligo-based microarray for melon that is being used in experiments to further analyse the melon transcriptome.


Assuntos
Cucurbitaceae/genética , Bases de Dados de Ácidos Nucleicos , Etiquetas de Sequências Expressas , Genoma de Planta , Sequência de Bases , Biologia Computacional , Genômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...