Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Front Immunol ; 13: 986823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159839

RESUMO

Virus-like particles (VLPs) have been gaining attention as potential platforms for delivery of cargos in nanomedicine. Although animal viruses are largely selected due to their immunostimulatory capacities, VLPs from plant viruses constitute a promising alternative to be considered. VLPs derived from Turnip mosaic virus (TuMV) have proven to present a tridimensional structure suited to display molecules of interest on their surface, making them interesting tools to be studied in theragnostic strategies. Here, we study their potential in the treatment of food allergy by genetically coupling TuMV-derived VLPs to Pru p 3, one of the most dominant allergens in Mediterranean climates. VLPs-Pru p 3 were generated by cloning a synthetic gene encoding the TuMV coat protein and Pru p 3, separated by a linker, into a transient high-expression vector, followed by agroinfiltration in Nicotiana benthamiana plants. The generated fusion protein self-assembled in planta to form the VLPs, which were purified by exclusion chromatography. Their elongated morphology was confirmed by electron microscopy and their size (~400 nm), and monodispersity was confirmed by dynamic light scattering. Initial in vitro characterization confirmed that they were able to induce proliferation of human immune cells. This proliferative capability was enhanced when coupled with the natural lipid ligand of Pru p 3. The resultant formulation, called VLP-Complex, was also able to be transported by intestinal epithelial cells, without affecting the monolayer integrity. In light of all these results, VLP-Complex was furtherly tested in a mouse model of food allergy. Sublingual administration of VLP-Complex could effectively reduce some serological markers associated with allergic responses in mice, such as anti-Pru p 3 sIgE and sIgG2a. Noteworthy, no associated macroscopic, nephritic, or hepatic toxicity was detected, as assessed by weight, blood urea nitrogen (BUN) and galectin-3 analyses, respectively. Our results highlight the standardized production of allergen-coated TuMV-VLPs in N. benthamiana plants. The resulting formula exerts notable immunomodulatory properties without the need for potentially hazardous adjuvants. Accordingly, no detectable toxicity associated to their administration was detected. As a result, we propose them as good candidates to be furtherly studied in the treatment of immune-based pathologies.


Assuntos
Hipersensibilidade Alimentar , Vacinas , Alérgenos/genética , Animais , Hipersensibilidade Alimentar/terapia , Galectina 3 , Humanos , Imunoterapia , Ligantes , Lipídeos , Camundongos , Potyvirus
4.
Front Immunol ; 13: 877383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844541

RESUMO

The mold Alternaria alternata is one of the main sources of asthma exacerbation, being its major allergen, Alt a 1, indispensable for its development. The main objective of this work was to answer two main questions: 1) can Alt a 1 by itself (without any other context) induce an asthmatic profile in vivo?; and 2) Which molecular mechanisms take place during this phenomenon? To answer both questions, we have developed a mouse model of allergic asthma using only Alt a 1 for mice sensitization. We also made use of in-vitro cellular models and computational studies to support some aspects of our hypothesis. Our results showed that Alt a 1 can induce an asthmatic phenotype, promoting tissue remodeling and infiltration of CD45+ cells, especially eosinophils and macrophages (Siglec F+ and F4/80+). Also, we have found that Alt a 1 sensitization is mediated by the TLR4-macrophage axis.


Assuntos
Asma , Proteínas Fúngicas , Macrófagos Alveolares , Receptor 4 Toll-Like , Alérgenos , Animais , Asma/imunologia , Eosinófilos/imunologia , Proteínas Fúngicas/imunologia , Macrófagos Alveolares/imunologia , Camundongos , Receptor 4 Toll-Like/imunologia
5.
Front Allergy ; 3: 864652, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769581

RESUMO

Lipid Transfer Proteins (LTPs) have been described as one of the most prevalent and cross-reactive allergen families in the general population. They are widely distributed among the plant kingdom, as well as in different plant organs ranging from pollen to fruits. Thus, they can initiate allergic reactions with very different outcomes, such as asthma and food allergy. Several mouse models have been developed to unravel the mechanisms that lead LTPs to promote such strong sensitization patterns. Interestingly, the union of certain ligands can strengthen the allergenic capacity of LTPs, suggesting that not only is the protein relevant in the sensitization process, but also the ligands that LTPs carry in their cavity. In fact, different LTPs with pro-allergenic capacity have been shown to transport similar ligands, thus positioning lipids in a central role during the first stages of the allergic response. Here, we offer the latest advances in the use of experimental animals to study the topic, remarking differences among them and providing future researchers a tool to choose the most suitable model to achieve their goals. Also, recent results derived from metabolomic studies in humans are included, highlighting how allergic diseases alter the lipidic metabolism toward a pathogenic state in the individual. Altogether, this review offers a comprehensive body of work that sums up the background evidence supporting the role of lipids as modulators of allergic diseases. Studying the role of lipids during allergic sensitization might broaden our understanding of the molecular events leading to tolerance breakdown in the epithelium, thus helping us to understand how allergy is initiated and established in the individuals.

6.
PLoS One ; 17(4): e0266971, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35417502

RESUMO

Non-specific lipid transfer proteins (nsLTPs) are small, cysteine-rich proteins, a part of the pathogenesis-related protein family, and numerous of them act as positive regulators during plant disease resistance, growth, and reproduction. These proteins are involved also in the intracellular transfer of lipids, as well as in plant immune responses. Besides their differences in sequences, they show similar features in their structure. However, they show distinct lipid-binding specificities signifying their various biological roles that dictate further structural study. This study reports the identification, in silico characterization and purification of a novel member of the nsLTP2 protein family from durum wheat, TdLTP2. It was generated and purified using the combination of gel filtration chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC). Its identity was detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry (MALDI-TOF). TdLTP2 had been expressed in different stress to detect its localization; therefore, fluor-immunolocalization studies accomplished this data. In this approach, to assess the allergenicity of TdLTP2, thirty patients with baker's asthma were enrolled and ELISA to detect the presence of specific IgE antibodies tested their sera. Moreover, the lipid-binding properties of TdLTP2 were examined in vitro and validated using a molecular docking study. In summary, our results demonstrate a new addition of member in plant nsLTPs family, TdLTP2, which can develop a better understanding about its biological functions and shed light on future applications.


Assuntos
Alérgenos , Proteínas de Plantas , Triticum , Proteínas de Transporte , Eletroforese em Gel de Poliacrilamida , Lipídeos , Simulação de Acoplamento Molecular , Proteínas de Plantas/genética , Proteínas , Triticum/química
7.
Sci Rep ; 12(1): 3329, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228630

RESUMO

Allergic sensitization is initiated by protein and epithelia interaction, although the molecular mechanisms leading this encounter toward an allergic phenotype remain unknown. Here, we apply the two-hit hypothesis of inflammatory diseases to the study of food allergy sensitization. First, we studied the effects of long-term depilation in mice by analyzing samples at different time points. Several weeks of depilation were needed until clear immunological changes were evidenced, starting with upregulation of NLRP3 protein levels, which was followed by overexpression of Il1b and Il18 transcripts. Secondly, we assessed the effects of allergen addition (in this case, Pru p 3 in complex with its natural lipid ligand) over depilated skin. Systemic sensitization was evaluated by intraperitoneal provocation with Pru p 3 and measure of body temperature. Anaphylaxis was achieved, but only in mice sensitized with Prup3_complex and not treated with the NLRP3 inhibitor MCC950, thus demonstrating the importance of both hits (depilation + allergen addition) in the consecution of the allergic phenotype. In addition, allergen encounter (but not depilation) promoted skin remodeling, as well as CD45+ infiltration not only in the sensitized area (the skin), but across several mucosal tissues (skin, lungs, and gut), furtherly validating the systemization of the response. Finally, a low-scale study with human ILC2s is reported, where we demonstrate that Prup3_complex can induce their phenotype switch (↑CD86, ↑S1P1) when cultured in vitro, although more data is needed to understand the implications of these changes in food allergy development.


Assuntos
Antígenos de Plantas , Hipersensibilidade Alimentar , Imunoglobulina E , Proteína 3 que Contém Domínio de Pirina da Família NLR , Alérgenos/imunologia , Animais , Antígenos de Plantas/administração & dosagem , Antígenos de Plantas/imunologia , Modelos Animais de Doenças , Hipersensibilidade Alimentar/imunologia , Furanos/farmacologia , Imunidade Inata , Imunoglobulina E/imunologia , Indenos/farmacologia , Linfócitos/imunologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteínas de Plantas/administração & dosagem , Proteínas de Plantas/imunologia , Sulfonamidas/farmacologia
8.
Plant Physiol Biochem ; 171: 115-127, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34992048

RESUMO

Plant non-specific lipid transfer proteins (nsLTPs) are usually defined as small, basic proteins, with a wide distribution in all orders of higher plants. Structurally, nsLTPs contain a conserved motif of eight cysteines, linked by four disulphide bonds, and a hydrophobic cavity in which the ligand is housed. This structure confers stability and enhances the ability to bind and transport a variety of hydrophobic molecules. Their highly conserved structural resemblance but low sequence identity reflects the wide variety of ligands they can carry, as well as the broad biological functions to which they are linked to, such as membrane stabilization, cell wall organization and signal transduction. In addition, they have also been described as essential in resistance to biotic and abiotic stresses, plant growth and development, seed development, and germination. Hence, there is growing interest in this family of proteins for their critical roles in plant development and for the many unresolved questions that need to be clarified, regarding their subcellular localization, transfer capacity, expression profile, biological function, and evolution.


Assuntos
Proteínas de Plantas , Plantas , Antígenos de Plantas , Lipídeos , Desenvolvimento Vegetal
9.
Artigo em Inglês | MEDLINE | ID: mdl-33771708

RESUMO

Plant lipid transfer proteins are a large family that can be found in all land plants. They have a hydrophobic cavity that allows them to harbor lipids and facilitates their traffic between membranes. However, in humans, this plant protein family is responsible for the main food allergies in the Mediterranean area. Nevertheless, not only the protein itself but also its ligand is relevant for allergic sensitization. The main aim of the present work is to analyse the natural ligands carried by four allergenic LTPs (Tri a 14, Art v 3, Par j 2, and Ole e 7), compared with the previously identified ligand of Pru p 3 (CPT-PHS ligand), and clarify their role within the immunological reactions. Results showed that the ligands of the LTPs studied shared a chemical identity, in which the presence of a polar head was essential to the protein-ligand binding. This ligand was transported through a skin cellular model, and phosphorylated phytosphingosine could be detected as result of cell metabolism. Since sphingosine kinase 1 was overexpressed in keratinocytes incubated with the LTP-ligand complex, this enzyme might be responsible for the phosphorylation of the phytosphingosine fraction of the CPT-PHS ligand. This way, phytosphingosine-1-phosphate could be mimicking the role of the human inflammatory mediator sphingosine-1-phosphate, explaining why LTPs are associated with more severe allergic responses. In conclusion, this work contributes to the understanding of the chemical nature and behavior of lipid ligands carried by allergens, which would help to gain insight into their role during allergic sensitization.


Assuntos
Alérgenos/imunologia , Alérgenos/metabolismo , Proteínas de Transporte/metabolismo , Alérgenos/química , Sequência de Aminoácidos , Hipersensibilidade Alimentar , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...