Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 932: 172915, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719035

RESUMO

The increasing trend regarding the use of plastics has arisen an exponential concern on the fate of their derived products to the environment. Among these derivatives, microplastics and nanoplastics (MNPs) have been featured for their associated environmental impact due to their low molecular size and high surface area, which has prompted their ubiquitous transference among all environmental interfaces. Due to the heterogenous chemical composition of MNPs, the study of these particles has focused a high number of studies, as a result of the myriad of associated physicochemical properties that contribute to the co-transference of a wide range of contaminants, thus becoming a major challenge for the scientific community. In this sense, both primary and secondary MNPs are well-known to be adscribed to industrial and urbanized areas, from which they are massively released to the environment through a multiscale level, involving the atmosphere, hydrosphere, and lithosphere. Consequently, much research has been conducted on the understanding of the interconnection between those interfaces, that motivate the spread of these contaminants to biological systems, being mostly represented by the biosphere, especially phytosphere and, finally, the anthroposphere. These findings have highlighted the potential hazardous risk for human health through different mechanisms from the environment, requiring a much deeper approach to define the real risk of MNPs exposure. As a result, there is a gap of knowledge regarding the environmental impact of MNPs from a high-throughput perspective. In this review, a metabolomics-based overview on the impact of MNPs to all environmental interfaces was proposed, considering this technology a highly valuable tool to decipher the real impact of MNPs on biological systems, thus opening a novel perspective on the study of these contaminants.


Assuntos
Metabolômica , Microplásticos , Microplásticos/toxicidade , Poluentes Ambientais , Nanopartículas/toxicidade , Monitoramento Ambiental
2.
Microb Ecol ; 87(1): 71, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748252

RESUMO

The high prevalence of antibiotic resistant bacteria (ARB) in several environments is a great concern threatening human health. Particularly, wastewater treatment plants (WWTP) become important contributors to the dissemination of ARB to receiving water bodies, due to the inefficient management or treatment of highly antibiotic-concentrated wastewaters. Hence, it is vital to develop molecular tools that allow proper monitoring of the genes encoding resistances to these important therapeutic compounds (antibiotic resistant genes, ARGs). For an accurate quantification of ARGs, there is a need for sensitive and robust qPCR assays supported by a good design of primers and validated protocols. In this study, eleven relevant ARGs were selected as targets, including aadA and aadB (conferring resistance to aminoglycosides); ampC, blaTEM, blaSHV, and mecA (resistance to beta-lactams); dfrA1 (resistance to trimethoprim); ermB (resistance to macrolides); fosA (resistance to fosfomycin); qnrS (resistance to quinolones); and tetA(A) (resistance to tetracyclines). The in silico design of the new primer sets was performed based on the alignment of all the sequences of the target ARGs (orthology grade > 70%) deposited in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, allowing higher coverages of the ARGs' biodiversity than those of several primers described to date. The adequate design and performance of the new molecular tools were validated in six samples, retrieved from both natural and engineered environments related to wastewater treatment. The hallmarks of the optimized qPCR assays were high amplification efficiency (> 90%), good linearity of the standard curve (R2 > 0.980), repeatability and reproducibility across experiments, and a wide linear dynamic range. The new primer sets and methodology described here are valuable tools to upgrade the monitorization of the abundance and emergence of the targeted ARGs by qPCR in WWTPs and related environments.


Assuntos
Antibacterianos , Primers do DNA , Genes Bacterianos , Reação em Cadeia da Polimerase em Tempo Real , Águas Residuárias , Primers do DNA/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Águas Residuárias/microbiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/classificação
3.
Microorganisms ; 12(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543484

RESUMO

Nowadays, the discharge of wastewater is a global concern due to the damage caused to human and environmental health. Wastewater treatment has progressed to provide environmentally and economically sustainable technologies. The biological treatment of wastewater is one of the fundamental bases of this field, and the employment of new technologies based on granular biofilm systems is demonstrating success in tackling the environmental issues derived from the discharge of wastewater. The granular-conforming microorganisms must be evaluated as functional entities because their activities and functions for removing pollutants are interconnected with the surrounding microbiota. The deep knowledge of microbial communities allows for the improvement in system operation, as the proliferation of microorganisms in charge of metabolic roles could be modified by adjustments to operational conditions. This is why engineering must consider the intrinsic microbiological aspects of biological wastewater treatment systems to obtain the most effective performance. This review provides an extensive view of the microbial ecology of biological wastewater treatment technologies based on granular biofilms for mitigating water pollution.

4.
J Hazard Mater ; 467: 133674, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38335605

RESUMO

Increased concerns exist about the presence of anticancer drugs in wastewater. However, knowledge of the impacts of anticancer drugs on the performance of the system and microbial communities during wastewater treatment processes is limited. We examined the effect of three anticancer drugs commonly detected in influents of wastewater treatment plants applied at three different concentration levels on the performance, efficiency of anticancer drug removal, and prokaryotic microbiome in an aerobic granular sludge system (AGS) operated in a sequential batch reactor (SBR). We showed that an AGS can efficiently remove anticancer drugs, with removal rates in the range of 53-100% depending on the type of drug and concentration level. Anticancer drugs significantly decreased the abundance of total bacterial and archaeal communities, an effect that was linked to reduced nitrogen removal efficiency. Anticancer drugs also reduced the diversity, altered the prokaryotic community composition, reduced network complexity, and induced a decrease of a wide range of predicted bacterial functions. Specific bacterial taxa responsive to the addition of anticancer drugs with known roles in nitrification and denitrification were identified. This study shows anticancer drugs should be monitored in the future as they can induce changes in the performance and microbiome of wastewater treatment technologies.


Assuntos
Microbiota , Esgotos , Archaea , Águas Residuárias , Nitrificação
5.
Environ Pollut ; 342: 123115, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086508

RESUMO

The use, overuse, and improper use of antibiotics have resulted in higher levels of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs), which have profoundly disturbed the equilibrium of the environment. Furthermore, once antibiotic agents are excreted in urine and feces, these substances often can reach wastewater treatment plants (WWTPs), in which improper treatments have been highlighted as the main reason for stronger dissemination of antibiotics, ARB, and ARGs to the receiving bodies. Hence, achieving better antibiotic removal capacities in WWTPs is proposed as an adequate approach to limit the spread of antibiotics, ARB, and ARGs into the environment. In this review, we highlight hospital wastewater (WW) as a critical hotspot for the dissemination of antibiotic resistance due to its high level of antibiotics and pathogens. Hence, monitoring the composition and structure of the bacterial communities related to hospital WW is a key factor in controlling the spread of ARGs. In addition, we discuss the advantages and drawbacks of the current biological WW treatments regarding the antibiotic-resistance phenomenon. Widely used conventional activated sludge technology has proved to be ineffective in mitigating the dissemination of ARB and ARGs to the environment. However, aerobic granular sludge (AGS) technology is a promising technology-with broad adaptability and excellent performance-that could successfully reduce antibiotics, ARB, and ARGs in the generated effluents. We also outline the main operational parameters involved in mitigating antibiotics, ARB, and ARGs in WWTPs. In this regard, WW operation under long hydraulic and solid retention times allows better removal of antibiotics, ARB, and ARGs independently of the WW technology employed. Finally, we address the current knowledge of the adsorption and degradation of antibiotics and their importance in removing ARB and ARGs. Notably, AGS can enhance the removal of antibiotics, ARB, and ARGs due to the complex microbial metabolism within the granular biomass.


Assuntos
Esgotos , Águas Residuárias , Esgotos/microbiologia , Genes Bacterianos , Antagonistas de Receptores de Angiotensina , Antibacterianos/farmacologia , Inibidores da Enzima Conversora de Angiotensina , Resistência Microbiana a Medicamentos/genética , Hospitais
6.
Bioresour Technol ; 394: 130195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081471

RESUMO

Anticancer drugs are frequently found in domestic wastewater, but knowledge of their impacts on wastewater treatment processes is limited. The effects of three levels of concentrations (low, medium, and high) of three anticancer drugs on physicochemical parameters and prokaryotic communities of a continuous-flow aerobic granular sludge (AGS) system were examined. Drugs at medium and high concentrations reduced the removal of total nitrogen and organic matter during the first 15 days of operation by approximately 15-20 % compared to a control, but these effects disappeared afterward. Removal efficiencies of drugs were in the range of 51.2-100 % depending on the concentration level. Drugs at medium and high concentrations reduced the abundance and diversity and altered the composition of prokaryotic communities. Specific taxa were linked to variations in performance parameters after the addition of the drugs. This study provides improved knowledge of the impacts of anticancer drugs in AGS systems operated in continuous-flow reactor.


Assuntos
Microbiota , Esgotos , Esgotos/química , Eliminação de Resíduos Líquidos , Reatores Biológicos , Águas Residuárias , Nitrogênio , Aerobiose
7.
Microb Ecol ; 87(1): 14, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091083

RESUMO

Cold environments are the most widespread extreme habitats in the world. However, the role of wastewater treatment plants (WWTPs) in the cryosphere as hotspots in antibiotic resistance dissemination has not been well established. Hence, a snapshot of the resistomes of WWTPs in cold environments, below 5 °C, was provided to elucidate their role in disseminating antibiotic resistance genes (ARGs) to the receiving waterbodies. The resistomes of two natural environments from the cold biosphere were also determined. Quantitative PCR analysis of the aadA, aadB, ampC, blaSHV, blaTEM, dfrA1, ermB, fosA, mecA, qnrS, and tetA(A) genes indicated strong prevalences of these genetic determinants in the selected environments, except for the mecA gene, which was not found in any of the samples. Notably, high abundances of the aadA, ermB, and tetA(A) genes were found in the influents and activated sludge, highlighting that WWTPs of the cryosphere are critical hotspots for disseminating ARGs, potentially worsening the resistance of bacteria to some of the most commonly prescribed antibiotics. Besides, the samples from non-disturbed cold environments had large quantities of ARGs, although their ARG profiles were highly dissimilar. Hence, the high prevalences of ARGs lend support to the fact that antibiotic resistance is a common issue worldwide, including environmentally fragile cold ecosystems.


Assuntos
Antibacterianos , Águas Residuárias , Antibacterianos/farmacologia , Eliminação de Resíduos Líquidos , Genes Bacterianos/genética , Ecossistema , Resistência Microbiana a Medicamentos/genética , Esgotos/microbiologia
8.
Chemosphere ; 345: 140374, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844701

RESUMO

Anticancer drugs are emerging contaminants that are being increasingly detected in urban wastewater. However, there is limited knowledge on the use of biological wastewater treatments, such as granular sludge systems (AGSs), to remove these substances and on their impacts on the general performance of the system and the eukaryotic communities in the granules. We investigated the impacts of three anticancer drugs commonly found in wastewater treatment plants and applied at three different concentrations on the removal efficiency of anticancer drugs, physicochemical parameters, and the eukaryotic microbiome of an AGS operated in a sequential batch reactor (SBR). Anticancer drugs applied at medium and high concentrations significantly decreased the removal efficiency of total nitrogen, the granular biomass concentration, and the size and setting velocity of granules. However, these effects disappeared after not adding the drugs for about a month thus showing the plasticity of the system to return to original levels. Regardless of the concentration of anticancer drugs tested, the AGS technology was effective in removing these substances, with removal rates in the range of 68.5%-100%. The presence of anticancer drugs at medium and high concentrations significantly decreased the abundance of total fungi, an effect that was linked to changes in the physicochemical parameters. Anticancer drugs also induced decreases in the diversity of the eukaryotic community, altered the community composition, and reduced the network complexity when applied at medium and high concentrations. Taxa responsive to the presence of anticancer drugs were identified. The diversity and composition of the eukaryotic microbiome returned to original diversity levels after not adding the drugs for about a month. Overall, this study increases our understanding of the impacts of anticancer drugs on the performance and eukaryotic microbiome of an AGS and highlights the need for monitoring these substances.


Assuntos
Esgotos , Águas Residuárias , Esgotos/química , Eliminação de Resíduos Líquidos , Reatores Biológicos , Nitrogênio/análise , Aerobiose
9.
J Hazard Mater ; 447: 130818, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36680899

RESUMO

The consumption of anticancer drugs (also known as chemotherapy drugs or antineoplastic drugs) has augmented over the last decades due to increased cancer incidence. Although there is an increasing concern about the presence of pharmaceutical compounds in natural environments and urban/domestic wastewater, anticancer drugs used in chemotherapy and anticancer medication have received less attention. In this review, the occurrence, environmental persistence, and known and potential ecological impacts of anticancer drugs is discussed. This review shows that these compounds are being increasingly detected in effluents of hospitals, influents and effluents of wastewater treatment plants, river surface water and sediments, groundwater, and even drinking water. Anticancer drugs can impact aquatic organisms such as algae, crustaceans, rotifers, and fish and may promote changes in soil and water microbial communities that may alter ecosystem functioning. Our knowledge of technologies for the removal of anticancer drugs is still limited, and these drugs can be dispersed in nature in a diffuse way in an uncontrolled manner. For this reason, an improved understanding of the presence, persistence, and ecological impacts of anticancer drugs in wastewater and natural environments is needed to help design management strategies, protect aquatic microorganisms, and mitigate potential ecological impacts.


Assuntos
Antineoplásicos , Água Potável , Poluentes Químicos da Água , Animais , Águas Residuárias , Ecossistema , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Antineoplásicos/análise
10.
Environ Pollut ; 314: 120316, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191797

RESUMO

Microplastics (MPs) provide a stable and protective habitat for diverse wastewater bacteria, including pathogenic and antibiotic-resistant species. Therefore, MPs may potentially transport these bacteria through wastewater treatment steps to the environment and far distances. This study investigated bacterial communities of MP-associated bacteria from different stages of municipal wastewater treatment processes to evaluate the potential negative effect of these biofilms on the environment. The results showed a high diversity of bacteria that were strongly attached to MPs. After all treatment steps, the core bacterial groups remained attached to MPs and escaped from the wastewater treatment plant with effluent water. Several pathogenic bacteria were identified in MP samples from all treatment steps, and most of them were found in effluent water. These data provide new insights into the possible impacts of wastewater-derived MPs on the environment. MP-associated biofilms were proved to be important sources of pathogens and antibiotic-resistant genes in natural waters.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Microplásticos , Águas Residuárias , Plásticos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Bactérias , Antibacterianos , Proteínas de Membrana Transportadoras , Água
11.
Amino Acids ; 54(10): 1403-1419, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35612670

RESUMO

Granular activated sludge has been described as a promising tool in treating wastewater. However, the effect of high concentrations of sulphur amino acids, cysteine and methionine, in the evolution, development and stability of AGS-SBRs (aerobic granular sludge in sequential batch reactors) and their microbial communities is not well-established. Therefore, this study aimed to evaluate microbial communities' size, structure and dynamics in two AGS-SBRs fed with two different concentrations of amino acids (50 and 100 mg L-1 of both amino acids). In addition, the impact of the higher level of amino acids was also determined under an acclimatization or shock strategy. While N removal efficiency decreased with amino acids, the removal of the organic matter was generally satisfactory. Moreover, the abrupt presence of both amino acids reduced even further the removal performance of N, whereas under progressive adaptation, the removal yield was higher. Besides, excellent removal rates of cysteine and methionine elimination were found, in all stages below 80% of the influent values. Generally considered, the addition of amino acids weakly impacts the microbial communities' total abundances. On the contrary, the presence of amino acids sharply modulated the dominant bacterial structures. Furthermore, the highest amino acid concentration under the shock strategy resulted in a severe change in the structure of the microbial community. Acidovorax, Flavobacterium, Methylophilus, Stenotrophomonas and Thauera stood out as the prominent bacteria to cope with the high presence of cysteine and methionine. Hence, the AGS-SBR technology is valuable for treating influents enriched in sulphur Aa inclusively when a shock strategy was used.


Assuntos
Aminoácidos Sulfúricos , Microbiota , Esgotos/química , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Cisteína , Reatores Biológicos/microbiologia , Águas Residuárias , Metionina , Nitrogênio
12.
Toxics ; 9(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922816

RESUMO

Two aerobic granular sludge (AGS) sequential batch reactors were operated at a mild (15 °C) temperature for 180 days. One of those bioreactors was exposed to a mixture of diclofenac, naproxen, trimethoprim, and carbamazepine. The AGS system, operating under pressure from emerging contaminants, showed a decrease in COD, BOD5, and TN removal capacity, mainly observed during the first 100 days, in comparison with the removal ratios detected in the control bioreactor. After an acclimatisation period, the removal reached high-quality effluent for COD and TN, close to 95% and 90%, respectively. In the steady-state period, trimethoprim and diclofenac were successfully removed with values around 50%, while carbamazepine and naproxen were more recalcitrant. The dominant bacterial OTUs were affected by the presence of a mixture of pharmaceutical compounds, under which the dominant phylotypes changed to OTUs classified among the Pseudomonas, Gemmobacter, and Comamonadaceae. The RT-qPCR and qPCR results showed the deep effects of pharmaceutical compounds on the number of copies of target genes. Statistical analyses allowed for linking the total and active microbial communities with the physico-chemical performance, describing the effects of pharmaceutical compounds in pollution degradation, as well as the successful adaptation of the system to treat wastewater in the presence of toxic compounds.

13.
Environ Sci Pollut Res Int ; 28(30): 41351-41364, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33783701

RESUMO

A sequential bed granular bioreactor was adapted to treat nitrate-polluted synthetic groundwater under anaerobic conditions and agitation with denitrification gas, achieving very efficient performance in total nitrogen removal at influent organic carbon concentrations of 1 g L-1 (80-90%) and 0.5 g L-1 (70-80%) sodium acetate, but concentrations below 0.5 g L-1 caused accumulation of nitrite and nitrate and led to system failure (30-40% removal). Biomass size and settling velocity were higher above 0.5 g L-1 sodium acetate. Trichosporonaceae dominated the fungal populations at all times, while a dominance of terrestrial group Thaumarchaeota and Acidovorax at 1 and 0.5 g L-1 passed to a domination of Methanobrevibacter and an unclassified Comamonadaceae clone for NaAc lower than 0.5 g L-1. The results obtained pointed out that the denitrifying granular sludge technology is a feasible solution for the treatment of nitrogen-contaminated groundwater, and that influent organic matter plays an important role on the conformation of microbial communities within it and, therefore, on the overall efficiency of the system.


Assuntos
Água Subterrânea , Esgotos , Reatores Biológicos , Desnitrificação , Nitrogênio/análise
14.
Water Res X ; 9: 100069, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33083777

RESUMO

Nitrite in drinking water is a potentially harmful substance for humans, and controlling nitrite formation in drinking water distribution systems (DWDSs) is highly important. The effect of natural organic matter (NOM) on the formation of nitrite in simulated distribution systems was studied. The objective was to inspect how a reduced NOM concentration affected nitrite development via nitrification, separated from the effects of disinfection. We observed that nitrite formation was noticeably sensitive to the changes in the NOM concentrations. Nitrite declined with reduced NOM (TOC 1.0 mg L-1) but increased with the normal NOM concentration of tap water (TOC 1.6 mg L-1). Ammonium oxidation was not altered by the reduced NOM, however, nitrite oxidation was enhanced significantly according to the pseudo-first order reaction rate model interpretation. The enhanced nitrite oxidation was observed with both ammonium and nitrite as the initial nitrogen source. The theoretical maximum nitrite concentrations were higher with the normal concentration of NOM than with reduced NOM. The results suggest that the role of nitrite oxidation may be quite important in nitrite formation in DWDSs and worth further studies. As a practical result, our study supported enhanced NOM removal in non-disinfected DWDSs.

15.
Bioresour Technol ; 300: 122650, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31911317

RESUMO

Three bioreactors were inoculated with Polar Arctic Circle-activated sludge, started-up and operated for 150 days at 8, 15 and 26 °C. Removal performances and granular conformation were similar at steady-state, but higher stability from start-up was found when operating at 8 °C. Important changes in the eukaryotic and prokaryotic populations caused by operational temperature were observed, being fungi dominant at 8 °C and 15 °C, while that ciliated organisms were found at 26 °C. The qPCR results showed higher copies of bacteria, and nitrifiers and denitrifying bacteria at cold temperature. The emission of nitrous oxide was linked directly with temperature and the involved microorganisms. This study represents a proof of concept in performance, greenhouse gas emission, granular formation and the role of the Polar Arctic Circle microbial population in AGS technology under different temperatures with the aim to understand the effect of seasonal o daily changes for implementation of AGS at full-scale.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Biomassa , Reatores Biológicos , Temperatura
16.
J Hazard Mater ; 376: 58-67, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31121453

RESUMO

The present work aims to use aerobic granular sludge technology for the treatment of wastewater containing high organic matter loads and a mixture of phenolic compounds normally present in olive washing water. The physicochemical performance of five bioreactors treating different concentrations of mixture of phenolic acid was monitored to observe the response of the systems. The bioreactors that operated at 50, 100 and 300 mg L-1 did not show relevant changes in terms of performance and granules properties, showing high ratio of phenolic compound removal ratio. However, the bioreactors operated with high phenolic compound concentrations showed low rates of organic matter, nitrogen and phenolic acid removal. In the same way, high concentrations of phenolic compounds determined the disintegration of the granular biomass. Next-generation sequencing studies showed a stable community structure in the bioreactors operating with 50, 100 and 300 mg L-1 of phenolic acids, with the genera Lampropedia and Arenimonas, family Xanthobacteraceae and Fungi Pezizomycotina as the dominant phylotypes. Conversely, the reactors operated at 500 and 600 mg L-1 of phenolic substances promoted the proliferation of Oligohymenophorea ciliates. Thus, this study suggests that aerobic granular sludge technology could be useful for the treatment of wastewaters such as olive washing water.


Assuntos
Reatores Biológicos/microbiologia , Microbiota , Fenóis/análise , Esgotos/microbiologia , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Aerobiose , Modelos Teóricos , Águas Residuárias/química
17.
Chemosphere ; 225: 73-82, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30861385

RESUMO

A lab-scale partial nitritation SBR was operated at 11 °C for 300 days used for the treatment of high-ammonium wastewater, which was inoculated with activated sludge from Rovaniemi WWTP (located in Polar Arctic Circle) in order to evaluate the influence the temperature on the performance, stability and dynamics of its microbial community. The partial nitritation achieved steady-state long-term operation and granulation process was not affected despite the low temperature and high ammonia concentration. The steady conditions were reached after 60 days of operation where the granular biomass was fully-formed and the 50%-50% of ammonium-nitrite effluent was successful achieved. Inoculation with cold adapted inoculum showed to yield bigger, denser granules with faster start-up without necessity of low temperature adaptation period. Next-generation sequences techniques showed that Trichosporonaceae and Xanthomonadaceae were the dominant OTUs in the mature granules. Our study could be useful in the implementation of full-scale partial nitritation reactors in cold regions such as Nordic countries for treating wastewater with high concentration of ammonium.


Assuntos
Reatores Biológicos/microbiologia , Temperatura Baixa , Nitritos/análise , Esgotos/microbiologia , Purificação da Água/métodos , Compostos de Amônio/análise , Biomassa , Países Escandinavos e Nórdicos , Trichosporon/metabolismo , Xanthomonadaceae/metabolismo
18.
Biotechnol Prog ; 35(1): e2708, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30294885

RESUMO

The effect of antibiotics sulfadiazine and trimethoprim on activated sludge operated at 8°C was investigated. Performance and microbial communities of sequencing batch reactors (SBRs) and Membrane Bioreactors (MBRs) were compared before and after the exposure of antibiotics to the synthetic wastewater. The results revealed irreversible negative effect of these antibiotics in environmentally relevant concentrations on nitrifying microbial community of SBR activated sludge. In opposite, MBR sludge demonstrated fast adaptation and more stable performance during the antibiotics exposure. Dynamics of microbial community was greatly affected by presence of antibiotics. Bacteria from classes Betaproteobacteria and Bacteroidetes demonstrated the potential to develop antibiotic resistance in both wastewater treatment systems while Actinobacteria disappeared from all of the reactors after 60 days of antibiotics exposure. Altogether, results showed that operational parameters such as sludge retention time (SRT) and reactor configuration had great effect on microbial community composition of activated sludge and its vulnerability to antibiotics. Operation at long SRT allowed archaea, including ammonium oxidizing species (AOA) such as Nitrososphaera viennensis to grow in MBRs. AOA could have an important role in stable nitrification performance of MBR-activated sludge as a result of tolerance of archaea to antibiotics. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2708, 2019.


Assuntos
Reatores Biológicos/microbiologia , Esgotos/microbiologia , Sulfadiazina/farmacologia , Trimetoprima/farmacologia , Microbiota/efeitos dos fármacos , Eliminação de Resíduos Líquidos
19.
Bioresour Technol ; 270: 1-10, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30199700

RESUMO

Two microbial fuel cells were inoculated with activated sludge from Finland and operated under moderate (25 °C) and low (8 °C) temperatures. Operation under real urban wastewater showed similarities in chemical oxygen demand removal and voltage generated, although moderate temperature supported higher ammonium oxidation. Fungi disappeared in the microbial fuel cell operated at temperature of 25 °C. Archaea domain was dominated by methanogenic archaea at both temperature scenarios. Important differences were observed in bacterial communities between both temperatures, however generating similar voltage. The results supported that the implementation of microbial fuel cells in Nordic countries operating under real conditions could be successful, as well as suggested the flexibility of cold-adapted inoculum for starting-up microbial fuel cells, regardless of the operating temperature of the system, obtaining higher COD removal and voltage generation performances at low temperature than at moderate temperature.


Assuntos
Águas Residuárias/química , Fontes de Energia Bioelétrica/microbiologia , Análise da Demanda Biológica de Oxigênio , Clima , Temperatura Baixa , Eletricidade , Finlândia , Microbiota , Esgotos , Temperatura
20.
Appl Microbiol Biotechnol ; 102(12): 5065-5076, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29713791

RESUMO

Waste treatment and the simultaneous production of energy have gained great interest in the world. In the last decades, scientific efforts have focused largely on improving and developing sustainable bioprocess solutions for energy recovery from challenging waste. Anaerobic digestion (AD) has been developed as a low-cost organic waste treatment technology with a simple setup and relatively limited investment and operating costs. Different technologies such as one-stage and two-stage AD have been developed. The viability and performance of these technologies have been extensively reported, showing the supremacy of two-stage AD in terms of overall energy recovery from biomass under different substrates, temperatures, and pH conditions. However, a comprehensive review of the advantages and disadvantages of these technologies is still lacking. Since microbial ecology is critical to developing successful AD, many studies have shown the structure and dynamics of archaeal and bacterial communities in this type of system. However, the role of Eukarya groups remains largely unknown to date. In this review, we provide a comprehensive review of the role, abundance, dynamics, and structure of archaeal, bacterial, and eukaryal communities during the AD process. The information provided could help researchers to select the adequate operational parameters to obtain the best performance and biogas production results.


Assuntos
Reatores Biológicos , Microbiologia Industrial/tendências , Eliminação de Resíduos/métodos , Anaerobiose , Archaea/metabolismo , Bactérias/metabolismo , Biocombustíveis , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...