Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37174605

RESUMO

The combination of estrus synchronization and superovulation (SS) treatments causes alterations in ovarian and endometrial gene expression patterns, resulting in abnormal follicle and oocyte growth, fertilization, and embryo development. However, the impact of combined SS treatments on the transcriptome of the surviving embryos remains unidentified. In this study, we examined gene expression changes in day 6 blastocysts that survived a brief regimen of synchronization treatment combined with superovulation. The sows were included in one of three groups: SS7 group (n = 6), sows were administered Altrenogest (ALT) 7 days from the day of weaning and superovulated with eCG 24 h after the end of ALT treatment and hCG at the onset of estrus; SO group (n = 6), ALT nontreated sows were superovulated with eCG 24 h postweaning and hCG at the onset of estrus; control group (n = 6), weaned sows displaying natural estrus. Six days after insemination, the sows underwent a surgical intervention for embryo collection. Transcriptome analysis was performed on blastocyst-stage embryos with good morphology. Differentially expressed genes (DEGs) between groups were detected using one-way ANOVA with an un-adjusted p-value < 0.05 and a fold change 1.5. The effect of SO treatment on the number of altered pathways and DEGs within each pathway was minimal. Only four pathways were disrupted comprising only a total of four altered transcripts, which were not related to reproductive functions or embryonic development. On the other hand, the surviving blastocysts subjected to SS7 treatments exhibited moderate gene expression changes in terms of DEGs and fold changes, with seven pathways disrupted containing a total of 10 transcripts affected. In this case, the up-regulation of certain pathways, such as the metabolic pathway, with two up-regulated genes associated with reproductive functions, namely RDH10 and SPTLC2, may suggest suboptimal embryo quality, while the down-regulation of others, such as the glutathione metabolism pathway, with down-regulated genes related to cellular detoxification of reactive oxygen species, namely GSTK1 and GSTO1, could depress the embryos' response to oxidative stress, thereby impairing subsequent embryo development. The gene expression changes observed in the present study in SS7 embryos, along with previous reports indicating SS7 can negatively affect fertilization, embryo production, and reproductive tract gene expression, make its use in embryo transfer programs unrecommendable.

2.
J Anim Sci ; 100(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36169657

RESUMO

The combination of estrus synchronization and superovulation treatments introduces molecular modifications whose effects are yet to be disclosed. Here, reproductive parameters and gene expression changes in ovaries and endometrium were explored on day 6 after artificial insemination (AI), when synthetic progestin altrenogest (ALT) was combined with gonadotropins. Sows were administered ALT for 7 d beginning on the day of weaning and superovulated with equine chorionic gonadotropin (eCG) 24 h later and human chorionic gonadotropins (hCG) at the onset of estrus (SS-7 group; n = 6). The controls were either superovulated sows with eCG 24 h postweaning and hCG at the onset of estrus (SC group; n = 6) or sows with postweaning spontaneous estrus (NC group; n = 6). Ovary examination and embryo and tissue collection were performed in all sows via laparotomy on day 6 post-AI. RNA-Seq was conducted to analyze differentially expressed genes (DEGs) between groups. Statistical analysis of the reproductive parameters was conducted with ANOVA and Tukey post hoc tests. DEGs were analyzed with an ANOVA (fold changes ≥2 or ≤2, P value <0.05). Hormonal treatments almost doubled (P < 0.03) the number of corpora lutea (39.8 ± 10.2 and 38.3 ± 11.1 in SS-7 and SC sows, respectively) compared with that in the NC group (23.1 ± 3.8). In contrast, embryo viability significantly decreased (P < 0.003) in response to SS-7 treatment (75.1% ± 15.2%) compared to SC and NC groups (93.8 ± 7.6% and 91.8 ± 6.9%, respectively). RNA-Seq analyses revealed 675 and 1,583 DEGs in the SS-7 group compared to both SC and NC groups in endometrial and ovarian samples, respectively. Interestingly, many genes with key roles in the Wnt/ß-catenin and Notch signaling pathways were differentially expressed in SS-7 sows relative to SC and NC groups (e.g., Ctnnb1, Myc, Gli3, Scyl2, Ccny, Daam1, Ppm1n, Rbpj, and Usp8). A key finding in this study was the downregulation of ß-catenin (Ctnnb1) gene expression in the SS-7 endometrium, suggesting that this treatment influences embryo-uterine dialogue by triggering a cascade of events leading to embryo maldevelopment. These data explain the proliferative defects in SS-7 embryos and suggest a novel mechanism of a porcine embryo-maternal crosstalk.


Methods for porcine superovulation (increasing the number of ovulated oocytes per cycle) and estrus synchronization (grouping estrus sows on the same day) are available for assisted reproductive technologies, using hormonal treatments. The main goal of the present study was to understand how hormones used for these purposes influence gene expression patterns in the female reproductive tract (ovaries and endometrium). We observed that hormonal treatments (synchronization combined with superovulation) have the potential to alter ovarian and endometrial gene expression patterns, triggering improper follicle development and oocyte growth, and leading to abnormal embryonic development before implantation. Genes involved in two key metabolic pathways for embryo development (Wnt/ß-catenin and Notch signaling pathways) were dysregulated in reproductive tissues.


Assuntos
Superovulação , beta Catenina , Animais , Feminino , Humanos , Gonadotropina Coriônica/farmacologia , Regulação para Baixo , Endométrio , Gonadotropinas Equinas , Cavalos , Superovulação/fisiologia , Suínos , Via de Sinalização Wnt , Receptores Notch/metabolismo
3.
Front Vet Sci ; 8: 771573, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869743

RESUMO

Although embryo transfer (ET) is a biotechnology ready for the swine industry, there are factors to be solved, the availability of embryo donors as one. Multiparous sows as donors ought to be considered since weaning is a natural and efficient method for estrus synchronization. In addition, superovulation treatments at weaning are effective in increasing the efficiency of donor embryo production. However, ET programs typically require more donors than those available from a single weaning, imposing grouping several weanings to establish a batch for ET. Since short-term administration of Altrenogest is effective in delaying estrus after weaning without effects on ovulation and embryo development, we investigated how Altrenogest combined with superovulation would affect reproductive parameters and embryo quality and quantity of weaned multiparous donor sows. The sows were administered Altrenogest from the day of weaning for 14 (SS-14 group; N = 26), 7 (SS-7 group; N = 31) and 4 (SS-4 group; N = 32) days. The sows were superovulated with eCG 24 h after the last administration of Altrenogest and with hCG at the onset of estrus. Sows not treated with Altrenogest that were superovulated with eCG 24 h post-weaning and hCG at the onset of estrus (SC group; N = 37) and sows with natural estrus after weaning (C group; N = 34) were used as control groups. The percentage of sows showing estrus within 10 days was not affected by the treatment, but the interval from Altrenogest withdrawal to estrus was longer (P < 0.05) in the SS groups than the interval from weaning to estrus in the controls. SS treatments increased (P < 0.05) the percentage of sows with ovarian cysts and the development of polycystic ovaries. The pregnancy and the fertilization rates, and the overall embryo production efficiency were also negatively affected by the SS treatments (P < 0.05). Interestingly, almost 70% of the structures classified as unfertilized oocytes or degenerated embryos in sows from the SS groups were immature oocytes. In conclusion, although superovulation of weaned sows was highly efficient, short-term administration of Altrenogest in combination with superovulation had negative effects on most of the reproductive parameters assessed, particularly affecting the overall efficiency of pregnancy and embryo production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...