Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(18)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911749

RESUMO

A new roadway eventual obstacle detection system based on computer vision is described and evaluated. This system uses low-cost hardware and open-source software to detect and classify moving elements in roads using infra-red and colour video images as input data. This solution represents an important advancement to prevent road accidents due to eventual obstacles which have considerably increased in the past decades, mainly with wildlife. The experimental evaluation of the system demonstrated that the proposed solution detects and classifies correctly different types of moving obstacles on roads, working robustly under different weather and illumination conditions.

2.
Sensors (Basel) ; 15(3): 5402-28, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25751079

RESUMO

This paper describes a supervisor system for monitoring the operation of automated agricultural vehicles. The system analyses all of the information provided by the sensors and subsystems on the vehicles in real time and notifies the user when a failure or potentially dangerous situation is detected. In some situations, it is even able to execute a neutralising protocol to remedy the failure. The system is based on a distributed and multi-level architecture that divides the supervision into different subsystems, allowing for better management of the detection and repair of failures. The proposed supervision system was developed to perform well in several scenarios, such as spraying canopy treatments against insects and diseases and selective weed treatments, by either spraying herbicide or burning pests with a mechanical-thermal actuator. Results are presented for selective weed treatment by the spraying of herbicide. The system successfully supervised the task; it detected failures such as service disruptions, incorrect working speeds, incorrect implement states, and potential collisions. Moreover, the system was able to prevent collisions between vehicles by taking action to avoid intersecting trajectories. The results show that the proposed system is a highly useful tool for managing fleets of autonomous vehicles. In particular, it can be used to manage agricultural vehicles during treatment operations.

3.
ScientificWorldJournal ; 2014: 404059, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25143976

RESUMO

Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis.


Assuntos
Agricultura/instrumentação , Algoritmos , Robótica/instrumentação , Inteligência Artificial , Software
4.
Sensors (Basel) ; 14(3): 4014-49, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24577525

RESUMO

In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles.


Assuntos
Agricultura/instrumentação , Veículos Automotores , Produtos Agrícolas/crescimento & desenvolvimento , Tomada de Decisões , Processamento de Imagem Assistida por Computador , Plantas Daninhas/crescimento & desenvolvimento , Potenciometria , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...