Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21266111

RESUMO

Patients with COVID-19 may develop abnormal inflammatory response and lymphopenia, followed in some cases by delayed-onset syndromes, often long-lasting after the initial SARS-CoV-2 infection. As viral infections may activate human endogenous retroviral elements (HERV), we studied the effect of SARS-CoV-2 on HERV-W and HERV-K envelope (ENV) expression, known to be involved in immunological and neurological pathogenesis of human diseases. Our results have showed that the exposure to SARS-CoV-2 virus activates early HERV-W and K transcription but only HERV-W ENV protein expression, in an infection- and ACE2-independent way within peripheral blood mononuclear cell cultures from one-third of healthy donors. Moreover, HERV-W ENV protein was significantly increased in serum and plasma of COVID-19 patients, correlating with its expression in CD3+ lymphocytes and with disease severity. Finally, HERV-W ENV was found expressed in post-mortem tissues of lungs, heart, brain olfactory bulb and nasal mucosa from acute COVID-19 patients in cell-types relevant for COVID-19-associated pathogenesis within affected organs, but different from those expressing of SARS-CoV-2 antigens. Altogether, the present study revealed that SARS-CoV-2 can induce HERV-W ENV expression in cells from individuals with symptomatic and severe COVID-19. Our data suggest that HERV-W ENV is likely to be involved in pathogenic features underlying symptoms of acute and post-acute COVID. It highlights the importance to further understand patients genetic susceptibility to HERV-W activation and the relevance of this pathogenic element as a prognostic marker and a therapeutic target in COVID-19 associated syndromes. Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=144 SRC="FIGDIR/small/21266111v2_ufig1.gif" ALT="Figure 1"> View larger version (68K): org.highwire.dtl.DTLVardef@1be71a1org.highwire.dtl.DTLVardef@1621b8org.highwire.dtl.DTLVardef@fff085org.highwire.dtl.DTLVardef@107cb0c_HPS_FORMAT_FIGEXP M_FIG C_FIG

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21266918

RESUMO

Massive testing is a cornerstone in efforts to effectively track infections and stop COVID-19 transmission, including places where good vaccination coverage has been achieved. However, SARS-CoV-2 testing by RT-qPCR requires specialized personnel, protection equipment, commercial kits, and dedicated facilities, which represent significant challenges for massive testing implementation in resource-limited settings. It is therefore important to develop testing protocols that facilitate implementation and are inexpensive, fast, and sufficiently sensitive. In this work, we optimized the composition of a buffer (PKTP) containing a protease, a detergent, and an RNase inhibitor, that is compatible with the RT-qPCR chemistry, allowing for direct testing of SARS-CoV-2 from saliva in an RNA extraction-independent manner. This buffer is compatible with heat-inactivation reducing the biohazard risk of handling the samples. We assessed the PKTP buffer performance in comparison to the RNA-extraction-based protocol of the US Centers for Disease Control and Prevention in saliva samples from 70 COVID-19 patients finding a good sensitivity (82.2% for the N1 and 84.4% for the N2 target, respectively) and correlations (R=0.77, p<0.001 for N1, and R=0.78, p<0.001 for N2). We also propose an auto-collection protocol for saliva samples and a multiplex reaction to reduce the number of PCR reactions per patient and further reduce overall costs while maintaining diagnostic standards in favor of massive testing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA