Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 9(5): 1613-1622, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30877080

RESUMO

Reproductive success in the eight founder strains of the Collaborative Cross (CC) was measured using a diallel-mating scheme. Over a 48-month period we generated 4,448 litters, and provided 24,782 weaned pups for use in 16 different published experiments. We identified factors that affect the average litter size in a cross by estimating the overall contribution of parent-of-origin, heterosis, inbred, and epistatic effects using a Bayesian zero-truncated overdispersed Poisson mixed model. The phenotypic variance of litter size has a substantial contribution (82%) from unexplained and environmental sources, but no detectable effect of seasonality. Most of the explained variance was due to additive effects (9.2%) and parental sex (maternal vs. paternal strain; 5.8%), with epistasis accounting for 3.4%. Within the parental effects, the effect of the dam's strain explained more than the sire's strain (13.2% vs. 1.8%), and the dam's strain effects account for 74.2% of total variation explained. Dams from strains C57BL/6J and NOD/ShiLtJ increased the expected litter size by a mean of 1.66 and 1.79 pups, whereas dams from strains WSB/EiJ, PWK/PhJ, and CAST/EiJ reduced expected litter size by a mean of 1.51, 0.81, and 0.90 pups. Finally, there was no strong evidence for strain-specific effects on sex ratio distortion. Overall, these results demonstrate that strains vary substantially in their reproductive ability depending on their genetic background, and that litter size is largely determined by dam's strain rather than sire's strain effects, as expected. This analysis adds to our understanding of factors that influence litter size in mammals, and also helps to explain breeding successes and failures in the extinct lines and surviving CC strains.


Assuntos
Alelos , Animais Geneticamente Modificados , Camundongos de Cruzamento Colaborativo/genética , Tamanho da Ninhada de Vivíparos/genética , Herança Materna , Algoritmos , Animais , Cruzamentos Genéticos , Meio Ambiente , Interação Gene-Ambiente , Testes Genéticos , Camundongos , Camundongos Endogâmicos , Modelos Genéticos , Fenótipo , Razão de Masculinidade , Especificidade da Espécie
3.
Nat Genet ; 47(4): 353-60, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25730764

RESUMO

Complex human traits are influenced by variation in regulatory DNA through mechanisms that are not fully understood. Because regulatory elements are conserved between humans and mice, a thorough annotation of cis regulatory variants in mice could aid in further characterizing these mechanisms. Here we provide a detailed portrait of mouse gene expression across multiple tissues in a three-way diallel. Greater than 80% of mouse genes have cis regulatory variation. Effects from these variants influence complex traits and usually extend to the human ortholog. Further, we estimate that at least one in every thousand SNPs creates a cis regulatory effect. We also observe two types of parent-of-origin effects, including classical imprinting and a new global allelic imbalance in expression favoring the paternal allele. We conclude that, as with humans, pervasive regulatory variation influences complex genetic traits in mice and provide a new resource toward understanding the genetic control of transcription in mammals.


Assuntos
Alelos , Desequilíbrio Alélico/genética , Cruzamentos Genéticos , Expressão Gênica , Especiação Genética , Camundongos/genética , Animais , Mecanismo Genético de Compensação de Dose , Feminino , Humanos , Masculino , Camundongos Knockout , Filogenia , Polimorfismo de Nucleotídeo Único
4.
PLoS Genet ; 11(2): e1004850, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25679959

RESUMO

Significant departures from expected Mendelian inheritance ratios (transmission ratio distortion, TRD) are frequently observed in both experimental crosses and natural populations. TRD on mouse Chromosome (Chr) 2 has been reported in multiple experimental crosses, including the Collaborative Cross (CC). Among the eight CC founder inbred strains, we found that Chr 2 TRD was exclusive to females that were heterozygous for the WSB/EiJ allele within a 9.3 Mb region (Chr 2 76.9 - 86.2 Mb). A copy number gain of a 127 kb-long DNA segment (designated as responder to drive, R2d) emerged as the strongest candidate for the causative allele. We mapped R2d sequences to two loci within the candidate interval. R2d1 is located near the proximal boundary, and contains a single copy of R2d in all strains tested. R2d2 maps to a 900 kb interval, and the number of R2d copies varies from zero in classical strains (including the mouse reference genome) to more than 30 in wild-derived strains. Using real-time PCR assays for the copy number, we identified a mutation (R2d2WSBdel1) that eliminates the majority of the R2d2WSB copies without apparent alterations of the surrounding WSB/EiJ haplotype. In a three-generation pedigree segregating for R2d2WSBdel1, the mutation is transmitted to the progeny and Mendelian segregation is restored in females heterozygous for R2d2WSBdel1, thus providing direct evidence that the copy number gain is causal for maternal TRD. We found that transmission ratios in R2d2WSB heterozygous females vary between Mendelian segregation and complete distortion depending on the genetic background, and that TRD is under genetic control of unlinked distorter loci. Although the R2d2WSB transmission ratio was inversely correlated with average litter size, several independent lines of evidence support the contention that female meiotic drive is the cause of the distortion. We discuss the implications and potential applications of this novel meiotic drive system.


Assuntos
Variações do Número de Cópias de DNA/genética , Genômica , Padrões de Herança/genética , Meiose/genética , Alelos , Animais , Cromossomos/genética , Cruzamentos Genéticos , Feminino , Técnicas de Genotipagem , Haplótipos/genética , Masculino , Camundongos , Mutação
5.
Mamm Genome ; 25(3-4): 95-108, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24487921

RESUMO

Inflammatory bowel disease (IBD) is an immune-mediated condition driven by improper responses to intestinal microflora in the context of environmental and genetic background. GWAS in humans have identified many loci associated with IBD, but animal models are valuable for dissecting the underlying molecular mechanisms, characterizing environmental and genetic contributions and developing treatments. Mouse models rely on interventions such as chemical treatment or introduction of an infectious agent to induce disease. Here, we describe a new model for IBD in which the disease develops spontaneously in 20-week-old mice in the absence of known murine pathogens. The model is part of the Collaborative Cross and came to our attention due to a high incidence of rectal prolapse in an incompletely inbred line. Necropsies revealed a profound proliferative colitis with variable degrees of ulceration and vasculitis, splenomegaly and enlarged mesenteric lymph nodes with no discernible anomalies of other organ systems. Phenotypic characterization of the CC011/Unc mice with homozygosity ranging from 94.1 to 99.8% suggested that the trait was fixed and acted recessively in crosses to the colitis-resistant C57BL/6J inbred strain. Using a QTL approach, we identified four loci, Ccc1, Ccc2, Ccc3 and Ccc4 on chromosomes 12, 14, 1 and 8 that collectively explain 27.7% of the phenotypic variation. Surprisingly, we also found that minute levels of residual heterozygosity in CC011/Unc have significant impact on the phenotype. This work demonstrates the utility of the CC as a source of models of human disease that arises through new combinations of alleles at susceptibility loci.


Assuntos
Cruzamento/métodos , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/fisiopatologia , Camundongos Endogâmicos/genética , Animais , Mapeamento Cromossômico , Cruzamentos Genéticos , Primers do DNA/genética , Genótipo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Linhagem , Reação em Cadeia da Polimerase , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...