Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(33): E3081-9, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23898186

RESUMO

The tRNA gene-mediated (tgm) silencing of RNA polymerase II promoters is dependent on subnuclear clustering of the tRNA genes, but genetic analysis shows that the silencing requires additional mechanisms. We have identified proteins that bind tRNA gene transcription complexes and are required for tgm silencing but not required for gene clustering. One of the proteins, Mod5, is a tRNA modifying enzyme that adds an N6-isopentenyl adenosine modification at position 37 on a small number of tRNAs in the cytoplasm, although a subpopulation of Mod5 is also found in the nucleus. Recent publications have also shown that Mod5 has tumor suppressor characteristics in humans as well as confers drug resistance through prion-like misfolding in yeast. Here, we show that a subpopulation of Mod5 associates with tRNA gene complexes in the nucleolus. This association occurs and is required for tgm silencing regardless of whether the pre-tRNA transcripts are substrates for Mod5 modification. In addition, Mod5 is bound to nuclear pre-tRNA transcripts, although they are not substrates for the A37 modification. Lastly, we show that truncation of the tRNA transcript to remove the normal tRNA structure also alleviates silencing, suggesting that synthesis of intact pre-tRNAs is required for the silencing mechanism. These results are discussed in light of recent results showing that silencing near tRNA genes also requires chromatin modification.


Assuntos
Alquil e Aril Transferases/metabolismo , Inativação Gênica/fisiologia , RNA Polimerase II/genética , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alquil e Aril Transferases/genética , Arabidopsis , Atorvastatina , Northern Blotting , Nucléolo Celular/metabolismo , Imunoprecipitação da Cromatina , Clonagem Molecular , Primers do DNA/genética , Ácidos Heptanoicos , Humanos , Imunoprecipitação , Hibridização In Situ , Oligonucleotídeos/genética , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , Pirróis , RNA Polimerase II/fisiologia , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
2.
Gene ; 526(1): 7-15, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23707796

RESUMO

Transfer RNA (tRNA) genes and other RNA polymerase III transcription units are dispersed in high copy throughout nuclear genomes, and can antagonize RNA polymerase II transcription in their immediate chromosomal locus. Previous work in Saccharomyces cerevisiae found that this local silencing required subnuclear clustering of the tRNA genes near the nucleolus. Here we show that the silencing also requires nucleosome participation, though the nature of the nucleosome interaction appears distinct from other forms of transcriptional silencing. Analysis of an extensive library of histone amino acid substitutions finds a large number of residues that affect the silencing, both in the histone N-terminal tails and on the nucleosome disk surface. The residues on the disk surfaces involved are largely distinct from those affecting other regulatory phenomena. Consistent with the large number of histone residues affecting tgm silencing, survey of chromatin modification mutations shows that several enzymes known to affect nucleosome modification and positioning are also required. The enzymes include an Rpd3 deacetylase complex, Hos1 deacetylase, Glc7 phosphatase, and the RSC nucleosome remodeling activity, but not multiple other activities required for other silencing forms or boundary element function at tRNA gene loci. Models for communication between the tRNA gene transcription complexes and local chromatin are discussed.


Assuntos
Inativação Gênica , Genes Fúngicos , RNA Fúngico/genética , RNA de Transferência/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Montagem e Desmontagem da Cromatina/genética , Histonas/química , Histonas/genética , Histonas/metabolismo , Elementos Isolantes , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Nucleossomos/genética , Nucleossomos/metabolismo , Conformação Proteica , RNA Polimerase III/metabolismo , RNA Fúngico/metabolismo , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Methods Mol Biol ; 714: 423-44, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21431756

RESUMO

RNA affinity tags (aptamers) have emerged as useful tools for the isolation of RNAs and ribonucleoprotein complexes from cell extracts. The streptavidin binding RNA aptamer binds with high affinity and is quickly and cleanly eluted with biotin under mild conditions that retain intact complexes. We describe the use of the streptavidin binding aptamer as a tool for purification and discuss strategies towards the design and production of tagged RNAs with a focus on structured target RNAs. The aptamer site can be further exploited as a unique region for the hybridization of oligonucleotide probes and localization by fluorescent in situ hybridization (FISH). The aptamer insertion will allow the localization of a population of RNA species (such as mutants) to be viewed specifically, while in the presence of the wild type RNA. We describe the production of labeled oligonucleotide probes and the preparation of yeast cells for the localization of RNAs by FISH.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , RNA/isolamento & purificação , RNA/metabolismo , Ribonucleoproteínas/isolamento & purificação , Ribonucleoproteínas/metabolismo , Sequência de Bases , Hibridização in Situ Fluorescente , Substâncias Macromoleculares/química , Substâncias Macromoleculares/isolamento & purificação , Substâncias Macromoleculares/metabolismo , Dados de Sequência Molecular , Sondas de Oligonucleotídeos/genética , Permeabilidade , Reação em Cadeia da Polimerase , Transporte Proteico , RNA/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Estreptavidina/metabolismo
4.
Genes Dev ; 22(16): 2204-14, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18708579

RESUMO

The 274 tRNA genes in Saccharomyces cerevisiae are scattered throughout the linear maps of the 16 chromosomes, but the genes are clustered at the nucleolus when compacted in the nucleus. This clustering is dependent on intact nucleolar organization and contributes to tRNA gene-mediated (tgm) silencing of RNA polymerase II transcription near tRNA genes. After examination of the localization mechanism, we find that the chromosome-condensing complex, condensin, is involved in the clustering of tRNA genes. Conditionally defective mutations in all five subunits of condensin, which we confirm is bound to active tRNA genes in the yeast genome, lead to loss of both pol II transcriptional silencing near tRNA genes and nucleolar clustering of the genes. Furthermore, we show that condensin physically associates with a subcomplex of RNA polymerase III transcription factors on the tRNA genes. Clustering of tRNA genes by condensin appears to be a separate mechanism from their nucleolar localization, as microtubule disruption releases tRNA gene clusters from the nucleolus, but does not disperse the clusters. These observations suggest a widespread role for condensin in gene organization and packaging of the interphase yeast nucleus.


Assuntos
Adenosina Trifosfatases/fisiologia , Nucléolo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Complexos Multiproteicos/fisiologia , RNA de Transferência/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Imunoprecipitação da Cromatina , Inativação Gênica , Genoma Fúngico , Hibridização In Situ , Interfase/fisiologia , Microtúbulos/metabolismo , Mutação/genética , Nocodazol/farmacologia , Reação em Cadeia da Polimerase , RNA Polimerase II/metabolismo , RNA Polimerase III/metabolismo , RNA Fúngico/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
J Biol Chem ; 280(10): 8637-9, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15654076

RESUMO

Transcription by RNA polymerase II is antagonized by the presence of a nearby tRNA gene in Saccharomyces cerevisiae. To test hypotheses concerning the mechanism of this tRNA gene-mediated (tgm) silencing, the effects of specific gene deletions were determined. The results show that the mechanism of silencing near tRNA genes is fundamentally different from other forms of transcriptional silencing in yeast. Rather, tgm silencing is dependent on the ability to cluster the dispersed tRNA genes in or near the nucleolus, constituting a form of three-dimensional gene control.


Assuntos
Nucléolo Celular/genética , Interferência de RNA , RNA de Transferência/genética , Saccharomyces cerevisiae/genética , Deleção de Genes , Genes Fúngicos , Fases de Leitura Aberta , RNA Polimerase II/metabolismo , RNA Fúngico/genética
6.
Science ; 302(5649): 1399-401, 2003 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-14631041

RESUMO

Early transfer RNA (tRNA) processing events in Saccharomyces cerevisiae are coordinated in the nucleolus, the site normally associated with ribosome biosynthesis. To test whether spatial organization of the tRNA pathway begins with nucleolar clustering of the genes, we have probed the subnuclear location of five different tRNA gene families. The results show that tRNA genes, though dispersed in the linear genome, colocalize with 5S ribosomal DNA and U14 small nucleolar RNA at the nucleolus. Nucleolar localization requires tRNA gene transcription-complex formation, because inactivation of the promoter at a single locus removes its nucleolar association. This organization of tRNA genes must profoundly affect the spatial packaging of the genome and raises the question of whether gene types might be coordinated in three dimensions to regulate transcription.


Assuntos
Nucléolo Celular/genética , Genes Fúngicos , RNA de Transferência/genética , Saccharomyces cerevisiae/genética , DNA Polimerase II/metabolismo , DNA Polimerase III/metabolismo , DNA Ribossômico/análise , DNA Ribossômico/genética , Genes de RNAr , Genoma Fúngico , Íntrons , Família Multigênica , Regiões Promotoras Genéticas , RNA Fúngico/genética , RNA Ribossômico/biossíntese , RNA Ribossômico 5S/genética , RNA Nucleolar Pequeno/análise , RNA de Transferência de Glutamina/genética , RNA de Transferência de Ácido Glutâmico/genética , RNA de Transferência de Glicina/genética , RNA de Transferência de Leucina/genética , RNA de Transferência de Lisina/genética , Transcrição Gênica
7.
Mol Ther ; 7(2): 237-47, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12597912

RESUMO

Several types of small RNAs have been proposed as gene expression repressors with great potential for use in gene therapy. RNA polymerase III (pol III) provides an ideal means of expressing small RNAs in cells because its normal products are small, highly structured RNAs that are found in a variety of subcellular compartments. We have designed cassettes that use human pol III promoters for the high-level expression of small RNAs in the cytoplasm, nucleoplasm, and nucleolus. The levels and subcellular destinations of the transcripts are compared for transcripts expressed using the U6 small nuclear RNA (snRNA), 5S ribosomal RNA (rRNA), and the 7SL RNA component of the signal recognition particle. The most effective location for a particular inhibitory RNA is not necessarily predictable; thus these cassettes allow testing of the same RNA insert in multiple subcellular locations. Several small interfering RNA (siRNA) inserts were tested for efficacy. An siRNA insert that reduces lamin expression when transcribed from the U6 snRNA promoter in the nucleus has no effect on lamin expression when transcribed from 5S rRNA and 7SL RNA-based cassettes and found in the nucleolus and cytoplasm. To test further the generality of U6-driven siRNA inhibitors, siRNAs targeting HIV were tested by co-transfection with provirus in cell culture. Although the degree of HIV-1 inhibition varied among inserts, results show that the U6 cassette provides a means of expressing an siRNA-like inhibitor of HIV gene expression.


Assuntos
RNA/antagonistas & inibidores , Sequência de Bases , Linhagem Celular , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos , HIV-1/genética , Células HeLa , Humanos , Hibridização In Situ , Microscopia de Fluorescência , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , RNA/metabolismo , RNA Polimerase III/metabolismo , RNA Mensageiro/metabolismo , RNA Ribossômico 5S/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Nuclear Pequeno/metabolismo , Fatores de Tempo , Transfecção
8.
Nat Biotechnol ; 20(5): 505-8, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11981566

RESUMO

In many eukaryotes, expression of nuclear-encoded mRNA can be strongly inhibited by the presence of a double-stranded RNA (dsRNA) corresponding to exon sequences in the mRNA (refs 1,2). The use of this "RNA interference" (RNAi) in mammalian studies had lagged well behind its utility in lower animals because uninterrupted RNA duplexes longer than 30 base pairs trigger generalized cellular responses through activation of dsRNA-dependent protein kinases. Recently it was demonstrated that RNAi can be made to work in cultured human cells by introducing shorter, synthetic duplex RNAs (approximately 20 base pairs) through liposome transfection. We have explored several strategies for expressing similar short interfering RNA (siRNA) duplexes within cells from recombinant DNA constructs, because this might allow long-term target-gene suppression in cells, and potentially in whole organisms. Effective suppression of target gene product levels is achieved by using a human U6 small nuclear RNA (snRNA) promoter to drive nuclear expression of a single RNA transcript. The siRNA-like parts of the transcript consists of a 19 base pair siRNA stem with the two strands joined by a tightly structured loop and a U1-4 3' overhang at the end of the antisense strand. The simplicity of the U6 expression cassette and its widespread transcription in human cell types suggest that this mode of siRNA delivery could be useful for suppressing expression of a wide range of genes.


Assuntos
RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/metabolismo , RNA não Traduzido/metabolismo , Sequência de Bases , Linhagem Celular , Núcleo Celular/metabolismo , Células HeLa , Humanos , Microscopia de Fluorescência , Dados de Sequência Molecular , RNA/metabolismo , RNA de Cadeia Dupla , RNA Interferente Pequeno , Proteínas Recombinantes/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA