Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 326, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553544

RESUMO

A 42-year climate data record of global sea surface temperature (SST) covering 1980 to 2021 has been produced from satellite observations, with a high degree of independence from in situ measurements. Observations from twenty infrared and two microwave radiometers are used, and are adjusted for their differing times of day of measurement to avoid aliasing and ensure observational stability. A total of 1.5 × 1013 locations are processed, yielding 1.4 × 1012 SST observations deemed to be suitable for climate applications. The corresponding observation density varies from less than 1 km-2 yr-1 in 1980 to over 100 km-2 yr-1 after 2007. Data are provided at their native resolution, averaged on a global 0.05° latitude-longitude grid (single-sensor with gaps), and as a daily, merged, gap-free, SST analysis at 0.05°. The data include the satellite-based SSTs, the corresponding time-and-depth standardised estimates, their standard uncertainty and quality flags. Accuracy, spatial coverage and length of record are all improved relative to a previous version, and the timeseries is routinely extended in time using consistent methods.

2.
Sci Data ; 6(1): 223, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641133

RESUMO

A climate data record of global sea surface temperature (SST) spanning 1981-2016 has been developed from 4 × 1012 satellite measurements of thermal infra-red radiance. The spatial area represented by pixel SST estimates is between 1 km2 and 45 km2. The mean density of good-quality observations is 13 km-2 yr-1. SST uncertainty is evaluated per datum, the median uncertainty for pixel SSTs being 0.18 K. Multi-annual observational stability relative to drifting buoy measurements is within 0.003 K yr-1 of zero with high confidence, despite maximal independence from in situ SSTs over the latter two decades of the record. Data are provided at native resolution, gridded at 0.05° latitude-longitude resolution (individual sensors), and aggregated and gap-filled on a daily 0.05° grid. Skin SSTs, depth-adjusted SSTs de-aliased with respect to the diurnal cycle, and SST anomalies are provided. Target applications of the dataset include: climate and ocean model evaluation; quantification of marine change and variability (including marine heatwaves); climate and ocean-atmosphere processes; and specific applications in ocean ecology, oceanography and geophysics.

3.
Nature ; 465(7296): 334-7, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20485432

RESUMO

A large ( approximately 10(23) J) multi-decadal globally averaged warming signal in the upper 300 m of the world's oceans was reported roughly a decade ago and is attributed to warming associated with anthropogenic greenhouse gases. The majority of the Earth's total energy uptake during recent decades has occurred in the upper ocean, but the underlying uncertainties in ocean warming are unclear, limiting our ability to assess closure of sea-level budgets, the global radiation imbalance and climate models. For example, several teams have recently produced different multi-year estimates of the annually averaged global integral of upper-ocean heat content anomalies (hereafter OHCA curves) or, equivalently, the thermosteric sea-level rise. Patterns of interannual variability, in particular, differ among methods. Here we examine several sources of uncertainty that contribute to differences among OHCA curves from 1993 to 2008, focusing on the difficulties of correcting biases in expendable bathythermograph (XBT) data. XBT data constitute the majority of the in situ measurements of upper-ocean heat content from 1967 to 2002, and we find that the uncertainty due to choice of XBT bias correction dominates among-method variability in OHCA curves during our 1993-2008 study period. Accounting for multiple sources of uncertainty, a composite of several OHCA curves using different XBT bias corrections still yields a statistically significant linear warming trend for 1993-2008 of 0.64 W m(-2) (calculated for the Earth's entire surface area), with a 90-per-cent confidence interval of 0.53-0.75 W m(-2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...