Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 197: 517-532, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28177339

RESUMO

Copper oxide modified electrodes were investigated as a function of applied electrode potential using in situ infrared spectroscopy and ex situ Raman and X-ray photoelectron spectroscopy. In deoxygenated KHCO3 electrolyte bicarbonate and carbonate species were found to adsorb to the electrode during reduction and the CuO was reduced to Cu(i) or Cu(0) species. Carbonate was incorporated into the structure and the CuO starting material was not regenerated on cycling to positive potentials. In contrast, in CO2 saturated KHCO3 solution, surface adsorption of bicarbonate and carbonate was not observed and adsorption of a carbonato-species was observed with in situ infrared spectroscopy. This species is believed to be activated, bent CO2. On cycling to negative potentials, larger reduction currents were observed in the presence of CO2; however, less of the charge could be attributed to the reduction of CuO. In the presence of CO2 CuO underwent reduction to Cu2O and potentially Cu, with no incorporation of carbonate. Under these conditions the CuO starting material could be regenerated by cycling to positive potentials.

2.
ACS Comb Sci ; 17(2): 100-12, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25602735

RESUMO

In this paper, we demonstrate the use of continuous hydrothermal flow synthesis (CHFS) technology to rapidly produce a library of 56 crystalline (doped) zinc oxide nanopowders and two undoped samples, each with different particle properties. Each sample was produced in series from the mixing of an aqueous stream of basic zinc nitrate (and dopant ion or modifier) solution with a flow of superheated water (at 450 °C and 24.1 MPa), whereupon a crystalline nanoparticle slurry was rapidly formed. Each composition was collected in series, cleaned, freeze-dried, and then characterized using analytical methods, including powder X-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area measurement, X-ray photoelectron spectroscopy, and UV-vis spectrophotometry. Photocatalytic activity of the samples toward the decolorization of methylene blue dye was assessed, and the results revealed that transition metal dopants tended to reduce the photoactivity while rare earth ions, in general, increased the photocatalytic activity. In general, low dopant concentrations were more beneficial to having greater photodecolorization in all cases.


Assuntos
Metais Terras Raras/química , Processos Fotoquímicos , Óxido de Zinco/química , Catálise , Estrutura Molecular , Nanoestruturas/química , Tamanho da Partícula , Propriedades de Superfície
3.
Langmuir ; 29(33): 10603-9, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23841720

RESUMO

Continuous hydrothermal flow synthesis of crystalline ZnO nanorods and prisms is reported via a new pilot-scale continuous hydrothermal reactor (at nominal production rates of up to 1.2 g/h). Different size and shape particles of ZnO (wurtsite structure) were obtained via altering reaction conditions such as the concentration of either additive H2O2 or metal salt. Selected ZnO samples (used as prepared) were evaluated as solid oxide gas sensors, showing excellent sensitivity toward NO2 gas. It was found that both the working temperature and gas concentration significantly affected the NO2 gas response at concentrations as low as 1 ppm.

4.
Acta Biomater ; 7(2): 791-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20883835

RESUMO

The synthesis of high-strength, completely dense nanograined hydroxyapatite (bioceramic) monoliths is a challenge as high temperatures or long sintering times are often required. In this study, nanorods of hydroxyapatite (HA) and calcium-deficient HA (made using a novel continuous hydrothermal flow synthesis method) were consolidated using spark plasma sintering (SPS) up to full theoretical density in ∼5 min at temperatures up to 1000°C. After significant optimization of the SPS heating and loading cycles, fully dense HA discs were obtained which were translucent, suggesting very high densities. Significantly high three-point flexural strength values for such materials (up to 158 MPa) were measured. Freeze-fracturing of disks followed by scanning electron microscopy investigation revealed selected samples possessed sub-200 nm sized grains and no visible pores, suggesting they were fully dense.


Assuntos
Hidroxiapatitas/química , Teste de Materiais/métodos , Nanotubos/química , Gases em Plasma/química , Temperatura , Água/química , Luz , Nanotubos/ultraestrutura , Tamanho da Partícula , Espalhamento de Radiação , Difração de Raios X
5.
Dalton Trans ; 39(3): 711-4, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20066213

RESUMO

A novel and rapid and continuous hydrothermal route to the synthesis of extensive ultra-thin 2D sodium titanate (Na(2)Ti(3)O(7)) nano-sheets using a superheated water flow at 450 degrees C and 24.1 MPa as a crystallizing medium is described. High resolution electron microscopy of the sheets revealed that they were a few layers thick and largely uncurled, highly crystalline despite their very short time under hydrothermal flow conditions. The sodium titanate sheets possessed excellent photocatalytic activity for decolourisation of methylene blue dye.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...