Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 600(24): 5311-5332, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36271640

RESUMO

The ability to discriminate competing external stimuli and initiate contextually appropriate behaviours is a key brain function. Neurons in the deep superior colliculus (dSC) integrate multisensory inputs and activate descending projections to premotor pathways responsible for orienting, attention and defence, behaviours which involve adjustments to respiratory and cardiovascular parameters. However, the neural pathways that subserve the physiological components of orienting are poorly understood. We report that orienting responses to optogenetic dSC stimulation are accompanied by short-latency autonomic, respiratory and electroencephalographic effects in awake rats, closely mimicking those evoked by naturalistic alerting stimuli. Physiological responses were not accompanied by detectable aversion or fear, and persisted under urethane anaesthesia, indicating independence from emotional stress. Anterograde and trans-synaptic viral tracing identified a monosynaptic pathway that links the dSC to spinally projecting neurons in the medullary gigantocellular reticular nucleus (GiA), a key hub for the coordination of orienting and locomotor behaviours. In urethane-anaesthetized animals, sympathoexcitatory and cardiovascular, but not respiratory, responses to dSC stimulation were replicated by optogenetic stimulation of the dSC-GiA terminals, suggesting a likely role for this pathway in mediating the autonomic components of dSC-mediated responses. Similarly, extracellular recordings from putative GiA sympathetic premotor neurons confirmed short-latency excitatory inputs from the dSC. This pathway represents a likely substrate for autonomic components of orienting responses that are mediated by dSC neurons and suggests a mechanism through which physiological and motor components of orienting behaviours may be integrated without the involvement of higher centres that mediate affective components of defensive responses. KEY POINTS: Neurons in the deep superior colliculus (dSC) integrate multimodal sensory signals to elicit context-dependent innate behaviours that are accompanied by stereotypical cardiovascular and respiratory activities. The pathways responsible for mediating the physiological components of colliculus-mediated orienting behaviours are unknown. We show that optogenetic dSC stimulation evokes transient orienting, respiratory and autonomic effects in awake rats which persist under urethane anaesthesia. Anterograde tracing from the dSC identified projections to spinally projecting neurons in the medullary gigantocellular reticular nucleus (GiA). Stimulation of this pathway recapitulated autonomic effects evoked by stimulation of dSC neurons. Electrophysiological recordings from putative GiA sympathetic premotor neurons confirmed short latency excitatory input from dSC neurons. This disynaptic dSC-GiA-spinal sympathoexcitatory pathway may underlie autonomic adjustments to salient environmental cues independent of input from higher centres.


Assuntos
Formação Reticular , Colículos Superiores , Animais , Ratos , Colículos Superiores/fisiologia , Formação Reticular/fisiologia , Sistema Nervoso Autônomo/fisiologia , Neurônios/fisiologia , Vias Neurais/fisiologia , Uretana/farmacologia
2.
Neuroendocrinology ; 112(12): 1200-1213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35654013

RESUMO

INTRODUCTION: Angiotensin (Ang) II signalling in the hypothalamic paraventricular nucleus (PVN) via Ang type-1a receptors (AT1R) regulates vasopressin release and sympathetic nerve activity - two effectors of blood pressure regulation. We determined the cellular expression and function of AT1R in the PVN of a rodent model of polycystic kidney disease (PKD), the Lewis polycystic kidney (LPK) rat, to evaluate its contribution to blood pressure regulation and augmented vasopressin release in PKD. METHODS: PVN AT1R gene expression was quantified with fluorescent in situ hybridization in LPK and control rats. PVN AT1R function was assessed with pharmacology under urethane anaesthesia in LPK and control rats instrumented to record arterial pressure and sympathetic nerve activity. RESULTS: AT1R gene expression was upregulated in the PVN, particularly in corticotrophin-releasing hormone neurons, of LPK versus control rats. PVN microinjection of Ang II produced larger increases in systolic blood pressure in LPK versus control rats (36 ± 5 vs. 17 ± 2 mm Hg; p < 0.01). Unexpectedly, Ang II produced regionally heterogeneous sympathoinhibition (renal: -33%; splanchnic: -12%; lumbar: no change) in LPK and no change in controls. PVN pre-treatment with losartan, a competitive AT1R antagonist, blocked the Ang II-mediated renal sympathoinhibition and attenuated the pressor response observed in LPK rats. The Ang II pressor effect was also blocked by systemic OPC-21268, a competitive V1A receptor antagonist, but unaffected by hexamethonium, a sympathetic ganglionic blocker. DISCUSSION/CONCLUSION: Collectively, our data suggest that upregulated AT1R expression in PVN sensitizes neuroendocrine release of vasopressin in the LPK, identifying a central mechanism for the elevated vasopressin levels present in PKD.


Assuntos
Núcleo Hipotalâmico Paraventricular , Doenças Renais Policísticas , Ratos , Animais , Núcleo Hipotalâmico Paraventricular/metabolismo , Pressão Sanguínea , Roedores/genética , Roedores/metabolismo , Hibridização in Situ Fluorescente , Ratos Endogâmicos Lew , Vasopressinas/metabolismo , Sistema Nervoso Simpático/metabolismo , Angiotensina II , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Doenças Renais Policísticas/metabolismo , Rim
3.
Cardiovasc Res ; 118(4): 1138-1149, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33774660

RESUMO

AIMS: Hypertension is a prevalent yet poorly understood feature of polycystic kidney disease. Previously, we demonstrated that increased glutamatergic neurotransmission within the hypothalamic paraventricular nucleus produces hypertension in the Lewis Polycystic Kidney (LPK) rat model of polycystic kidney disease. Here, we tested the hypothesis that augmented glutamatergic drive to the paraventricular nucleus in Lewis polycystic kidney rats originates from the forebrain lamina terminalis, a sensory structure that relays blood-borne information throughout the brain. METHODS AND RESULTS: Anatomical experiments revealed that 38% of paraventricular nucleus-projecting neurons in the subfornical organ of the lamina terminalis expressed Fos/Fra, an activation marker, in LPK rats while <1% of neurons were Fos/Fra+ in Lewis control rats (P = 0.01, n = 8). In anaesthetized rats, subfornical organ neuronal inhibition using isoguvacine produced a greater reduction in systolic blood pressure in LPK vs. Lewis rats (-21±4 vs. -7±2 mmHg, P < 0.01; n = 10), which could be prevented by prior blockade of paraventricular nucleus ionotropic glutamate receptors using kynurenic acid. Blockade of ionotropic glutamate receptors in the paraventricular nucleus produced an exaggerated depressor response in LPK relative to Lewis rats (-23±4 vs. -2±3 mmHg, P < 0.001; n = 13), which was corrected by prior inhibition of the subfornical organ with muscimol but unaffected by chronic systemic angiotensin II type I receptor antagonism or lowering of plasma hyperosmolality through high-water intake (P > 0.05); treatments that both nevertheless lowered blood pressure in LPK rats (P < 0.0001). CONCLUSION: Our data reveal multiple independent mechanisms contribute to hypertension in polycystic kidney disease, and identify high plasma osmolality, angiotensin II type I receptor activation and, importantly, a hyperactive subfornical organ to paraventricular nucleus glutamatergic pathway as potential therapeutic targets.


Assuntos
Hipertensão , Doenças Renais Policísticas , Órgão Subfornical , Angiotensina II/metabolismo , Animais , Núcleo Hipotalâmico Paraventricular/metabolismo , Doenças Renais Policísticas/metabolismo , Ratos , Ratos Endogâmicos Lew , Receptores Ionotrópicos de Glutamato/metabolismo , Órgão Subfornical/metabolismo
4.
J Comp Neurol ; 529(4): 811-827, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32656805

RESUMO

Polysialic acid (polySia), a homopolymer of α2,8-linked glycans, is a posttranslational modification on a few glycoproteins, most commonly in the brain, on the neural cell adhesion molecule. Most research in the adult central nervous system has focused on its expression in higher brain regions, where its distribution coincides with regions known to exhibit high levels of synaptic plasticity. In contrast, scant attention has been paid to the expression of polySia in the hindbrain. The main aims of the study were to examine the distribution of polySia immunoreactivity in the brainstem and thoracolumbar spinal cord, to compare the distribution of polySia revealed by two commercial antibodies commonly used for its investigation, and to compare labeling in the rat and mouse. We present a comprehensive atlas of polySia immunoreactivity: we report that polySia labeling is particularly dense in the dorsal tegmentum, medial vestibular nuclei and lateral parabrachial nucleus, and in brainstem regions associated with autonomic function, including the dorsal vagal complex, A5, rostral ventral medulla, A1, and midline raphe, as well as sympathetic preganglionic neurons in the spinal cord and central targets of primary sensory afferents (nucleus of the solitary tract, spinal trigeminal nucleus, and dorsal horn [DH]). Ultrastructural examination showed labeling was present predominantly on the plasma membrane/within the extracellular space/in or on astrocytes. Labeling throughout the brainstem and spinal cord were very similar for the two antibodies and was eliminated by the polySia-specific sialidase, Endo-NF. Similar patterns of distribution were found in rat and mouse brainstem with differences evident in DH.


Assuntos
Tronco Encefálico/química , Vértebras Lombares , Ácidos Siálicos/análise , Medula Espinal/química , Vértebras Torácicas , Animais , Tronco Encefálico/citologia , Tronco Encefálico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Ácidos Siálicos/biossíntese , Medula Espinal/citologia , Medula Espinal/metabolismo
5.
J Physiol ; 597(13): 3407-3423, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31077360

RESUMO

KEY POINTS: Spinally-projecting neurons of the rostral ventrolateral medulla (RVLM) determine sympathetic outflow to different territories of the body. Previous studies suggest the existence of RVLM neurons with distinct functional classes, such as neurons that target sympathetic nerves bound for functionally-similar tissue types (e.g. muscle vasculature). The existence of RVLM neurons with more general actions had not been critically tested. Using viral tracing, we show that a significant minority of RVLM neurons send axon collaterals to disparate spinal segments (T2 and T10 ). Furthermore, optogenetic activation of sympathetic premotor neurons projecting to lumbar spinal segments also produced activation of sympathetic nerves from rostral spinal segments that innervate functionally diverse tissues (heart and forelimb muscle). These findings suggest the existence of individual RVLM neurons for which the axons branch to drive sympathetic preganglionic neurons of more than one functional class and may be able to produce global changes in sympathetic activity. ABSTRACT: We investigate the extent of spinal axon collateralization of rat rostral ventrolateral medulla (RVLM) sympathetic premotor neurons and its functional consequences. In anatomical tracing experiments, two recombinant herpes viral vectors with retrograde tropism and expressing different fluorophores were injected into the intermediolateral column at upper thoracic and lower thoracic levels. Histological analysis revealed that ∼21% of RVLM bulbospinal neurons were retrogradely labelled by both vectors, indicating substantial axonal collateralization to disparate spinal segments. In functional experiments, another virus with retrograde tropism, a canine adenovirus expressing Cre recombinase, was injected into the left intermediolateral horn around the thoracolumbar junction, whereas a Cre-dependent viral vector encoding Channelrhodopsin2 under LoxP control was injected into the ipsilateral RVLM. In subsequent terminal experiments, blue laser light (473 nm × 20 ms pulses at 10 mW) was used to activate RVLM neurons that had been transduced by both vectors. Stimulus-locked activation, at appropriate latencies, was recorded in the following pairs of sympathetic nerves: forelimb and hindlimb muscle sympathetic fibres, as well as cardiac and either hindlimb muscle or lumbar sympathetic nerves. The latter result demonstrates that axon collaterals of lumbar-projecting RVLM neurons project to, and excite, both functionally similar (forelimb and hindlimb muscle) and functionally dissimilar (lumbar and cardiac) preganglionic neurons. Taken together, these findings show that the axons of a significant proportion of RVLM neurons collateralise widely within the spinal cord, and that they may excite preganglionic neurons of more than one functional class.


Assuntos
Axônios/fisiologia , Neurônios/fisiologia , Medula Espinal/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Fibras Autônomas Pré-Ganglionares/fisiologia , Membro Posterior/fisiologia , Interneurônios/fisiologia , Masculino , Bulbo/fisiologia , Músculos/fisiologia , Vias Neurais/fisiologia , Ratos , Ratos Sprague-Dawley
6.
Front Neurosci ; 13: 121, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30842723

RESUMO

The anatomical and functional characterization of somatostatin (SST) and somatostatin receptors (SSTRs) within the spinal cord have been focused in the dorsal horn, specifically in relation to sensory afferent processing. However, SST is also present within the intermediolateral cell column (IML), which contains sympathetic preganglionic neurons (SPN). We investigated the distribution of SSTR2 within the thoracic spinal cord and show that SSTR2A and SSTR2B are expressed in the dorsal horn and on SPN and non-SPN in or near the IML. The effects of activating spinal SSTR and SSTR2 were sympathoinhibition, hypotension, bradycardia, as well as decreases in interscapular brown adipose tissue temperature and expired CO2, in keeping with the well-described inhibitory effects of activating SSTR receptors. These data indicate that spinal SST can decrease sympathetic, cardiovascular and thermogenic activities. Unexpectedly blockade of SSTR2 revealed that SST tonically mantains sympathetic, cardiovascular and thermogenic functions, as activity in all measured parameters increased. In addition, high doses of two antagonists evoked biphasic responses in sympathetic and cardiovascular outflows where the initial excitatory effects were followed by profound but transient falls in sympathetic nerve activity, heart rate and blood pressure. These latter effects, together with our findings that SSTR2A are expressed on GABAergic, presumed interneurons, are consistent with the idea that SST2R tonically influence a diffuse spinal GABAergic network that regulates the sympathetic cardiovascular outflow. As described here and elsewhere the source of tonically released spinal SST may be of intra- and/or supra-spinal origin.

7.
Shock ; 50(3): 331-338, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28991052

RESUMO

Decompensation, a critical phase in the response to hemorrhage, is characterized by profound sympathoinhibition and the overriding of baroreflex mediated compensation. As sympathoexcitatory neurons of the rostral ventrolateral medulla (RVLM) maintain vasomotor tone and are essential for sympathetic baroreceptor reflex function, the RVLM is the likely mediator. However, how decompensation occurs is a mystery. Our previous work demonstrated that the inhibitory neuropeptide somatostatin (SST), evokes potent sympathoinhibition. Here we test the hypothesis that, in response to hypovolemia, SST in the RVLM evokes sympathoinhibition, driving decompensation and suppressing baroreflex compensation. We evaluated neuronal activation at sites that contain SST mRNA and project to the RVLM and, in SST2A expressing neurons in the RVLM. We determined the effects on cardiovascular and sympathetic responses to haemorrhage, of bilateral blockade of SST2 receptors in both the RVLM and A1 regions. Haemorrhage in conscious rats evoked c-Fos immunoreactivity in the amygdala, periaqueductal gray, and parabrachial nuclei, regions previously associated with hemorrhage, shown to contain SST and project to the RVLM. Although c-Fos labeling was found throughout the ventrolateral medulla, only a small subset of RVLM SST2A receptor expressing neurons were activated, consistent with the idea that these neurons are inhibited during hemorrhage. However, SST2 receptor antagonists bilaterally injected in the RVLM or the A1 region did not affect the decompensation response to hemorrhage. Thus somatostatin in the RVLM does not mediate decompensation. The physiological role associated with somatostatin-induced sympathoinhibition in the RVLM together with the central mechanisms responsible for decompensation remain elusive.


Assuntos
Pressão Sanguínea , Hemorragia/metabolismo , Bulbo/metabolismo , Receptores de Somatostatina/metabolismo , Somatostatina/metabolismo , Animais , Hemorragia/patologia , Hemorragia/fisiopatologia , Masculino , Bulbo/patologia , Bulbo/fisiopatologia , Ratos , Ratos Sprague-Dawley
8.
J Neurosci ; 37(27): 6558-6574, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28576943

RESUMO

Expression of the large extracellular glycan, polysialic acid (polySia), is restricted in the adult, to brain regions exhibiting high levels of plasticity or remodeling, including the hippocampus, prefrontal cortex, and the nucleus of the solitary tract (NTS). The NTS, located in the dorsal brainstem, receives constant viscerosensory afferent traffic as well as input from central regions controlling sympathetic nerve activity, respiration, gastrointestinal functions, hormonal release, and behavior. Our aims were to determine the ultrastructural location of polySia in the NTS and the functional effects of enzymatic removal of polySia, both in vitro and in vivo polySia immunoreactivity was found throughout the adult rat NTS. Electron microscopy demonstrated polySia at sites that influence neurotransmission: the extracellular space, fine astrocytic processes, and neuronal terminals. Removing polySia from the NTS had functional consequences. Whole-cell electrophysiological recordings revealed altered intrinsic membrane properties, enhancing voltage-gated K+ currents and increasing intracellular Ca2+ Viscerosensory afferent processing was also disrupted, dampening low-frequency excitatory input and potentiating high-frequency sustained currents at second-order neurons. Removal of polySia in the NTS of anesthetized rats increased sympathetic nerve activity, whereas functionally related enzymes that do not alter polySia expression had little effect. These data indicate that polySia is required for the normal transmission of information through the NTS and that changes in its expression alter sympathetic outflow. polySia is abundant in multiple but discrete brain regions, including sensory nuclei, in both the adult rat and human, where it may regulate neuronal function by mechanisms identified here.SIGNIFICANCE STATEMENT All cells are coated in glycans (sugars) existing predominantly as glycolipids, proteoglycans, or glycoproteins formed by the most complex form of posttranslational modification, glycosylation. How these glycans influence brain function is only now beginning to be elucidated. The adult nucleus of the solitary tract has abundant polysialic acid (polySia) and is a major site of integration, receiving viscerosensory information which controls critical homeostatic functions. Our data reveal that polySia is a determinant of neuronal behavior and excitatory transmission in the nucleus of the solitary tract, regulating sympathetic nerve activity. polySia is abundantly expressed at distinct brain sites in adult, including major sensory nuclei, suggesting that sensory transmission may also be influenced via mechanisms described here. These findings hint at the importance of elucidating how other glycans influence neural function.


Assuntos
Vias Aferentes/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Ácidos Siálicos/metabolismo , Núcleo Solitário/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
9.
Artigo em Inglês | MEDLINE | ID: mdl-28298886

RESUMO

Spinally projecting neurons in the rostral ventrolateral medulla (RVLM) play a critical role in the generation of vasomotor sympathetic tone and are thought to receive convergent input from neurons at every level of the neuraxis; the factors that determine their ongoing activity remain unresolved. In this study we use a genetically restricted viral tracing strategy to definitively map their spatially diffuse connectome. We infected bulbospinal RVLM neurons with a recombinant rabies variant that drives reporter expression in monosynaptically connected input neurons and mapped their distribution using an MRI-based volumetric atlas and a novel image alignment and visualization tool that efficiently translates the positions of neurons captured in conventional photomicrographs to Cartesian coordinates. We identified prominent inputs from well-established neurohumoral and viscero-sympathetic sensory actuators, medullary autonomic and respiratory subnuclei, and supramedullary autonomic nuclei. The majority of inputs lay within the brainstem (88-94%), and included putative respiratory neurons in the pre-Bötzinger Complex and post-inspiratory complex that are therefore likely to underlie respiratory-sympathetic coupling. We also discovered a substantial and previously unrecognized input from the region immediately ventral to nucleus prepositus hypoglossi. In contrast, RVLM sympathetic premotor neurons were only sparsely innervated by suprapontine structures including the paraventricular nucleus, lateral hypothalamus, periaqueductal gray, and superior colliculus, and we found almost no evidence of direct inputs from the cortex or amygdala. Our approach can be used to quantify, standardize and share complete neuroanatomical datasets, and therefore provides researchers with a platform for presentation, analysis and independent reanalysis of connectomic data.


Assuntos
Encéfalo/anatomia & histologia , Conectoma/métodos , Neurônios/fisiologia , Medula Espinal/anatomia & histologia , Animais , Atlas como Assunto , Vetores Genéticos , Imageamento por Ressonância Magnética , Masculino , Bulbo/anatomia & histologia , Vírus da Raiva , Ratos , Ratos Sprague-Dawley , Simplexvirus
10.
J Comp Neurol ; 525(9): 2249-2264, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28295336

RESUMO

Previous studies have demonstrated that a range of stimuli activate neurons, including catecholaminergic neurons, in the ventrolateral medulla. Not all catecholaminergic neurons are activated and other neurochemical content is largely unknown hence whether stimulus specific populations exist is unclear. Here we determine the neurochemistry (using in situ hybridization) of catecholaminergic and noncatecholaminergic neurons which express c-Fos immunoreactivity throughout the rostrocaudal extent of the ventrolateral medulla, in Sprague Dawley rats treated with hydralazine or saline. Distinct neuronal populations containing PPCART, PPPACAP, and PPNPY mRNAs, which were largely catecholaminergic, were activated by hydralazine but not saline. Both catecholaminergic and noncatecholaminergic neurons containing preprotachykinin and prepro-enkephalin (PPE) mRNAs were also activated, with the noncatecholaminergic population located in the rostral C1 region. Few GlyT2 neurons were activated. A subset of these data was then used to compare the neuronal populations activated by 2-deoxyglucose evoked glucoprivation (Brain Structure and Function (2015) 220:117). Hydralazine activated more neurons than 2-deoxyglucose but similar numbers of catecholaminergic neurons. Commonly activated populations expressing PPNPY and PPE mRNAs were defined. These likely include PPNPY expressing catecholaminergic neurons projecting to vasopressinergic and corticotrophin releasing factor neurons in the paraventricular nucleus, which when activated result in elevated plasma vasopressin and corticosterone. Stimulus specific neurons included noncatecholaminergic neurons and a few PPE positive catecholaminergic neuron but neurochemical codes were largely unidentified. Reasons for the lack of identification of stimulus specific neurons, readily detectable using electrophysiology in anaesthetized preparations and for which neural circuits can be defined, are discussed.


Assuntos
Bulbo/citologia , Neuroquímica , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Animais , Anti-Hipertensivos/farmacologia , Catecolaminas/metabolismo , Desoxiglucose/farmacologia , Encefalinas/genética , Encefalinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Hidralazina/farmacologia , Hipotensão/metabolismo , Hipotensão/patologia , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Taquicininas/genética , Taquicininas/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-28351548

RESUMO

Schizophrenia is associated with significant pathophysiological changes to interneurons within the prefrontal cortex (PFC), with mRNA and protein changes associated with the GABA network localized to specific interneuron subtypes. Methamphetamine is a commonly abused psychostimulant that can induce chronic psychosis and symptoms that are similar to schizophrenia, suggesting that chronic METH induced psychosis may be associated with similar brain pathology to schizophrenia in the PFC. The aim of this study, therefore, was to examine mRNA expression of interneuron markers across two regions of the PFC (prelimbic (PRL) and orbitofrontal cortices (OFC)) following METH sensitization, an animal model of METH psychosis. We also studied the association between GABA mRNA expression and interneuronal mRNA expression to identify whether particular changes to the GABA network could be localized to a specific inhibitory cellular phenotype. METH sensitization increased the transcriptional expression of calbindin, calretinin, somatostatin, cholecyctokinin and vasoactive intestinal peptide in the PRL while parvalbumin, calbindin, cholectokinin and vasoactive intestinal peptide were upregulated in the OFC. Based on our previous findings, we also found significant correlations between GAD67, GAT1 and parvalbumin while GAD67, GAD65 and GAT1 were positively correlated with cholecystokinin in the PRL of METH sensitized rats. Within the OFC, the expression of GABAAα1 was positively correlated with somatostatin while GABAAα5 was negatively associated with somatostatin and calbindin. These findings suggest that METH sensitization differentially changes the expression of mRNAs encoding for multiple peptides and calcium binding proteins across the PRL and the OFC. Furthermore, these findings support that changes to the GABA network may also occur within specific cell types. These results, therefore, provide the first evidence that METH sensitization mediates differential interneuronal pathology across the PRL and OFC and such changes could have profound consequences on behavior and cognitive output.


Assuntos
Sensibilização do Sistema Nervoso Central , Interneurônios/metabolismo , Interneurônios/patologia , Lobo Límbico/metabolismo , Metanfetamina/farmacologia , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/metabolismo , Animais , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Glutamato Descarboxilase/metabolismo , Lobo Límbico/patologia , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/metabolismo , Córtex Pré-Frontal/patologia , Ratos , Receptores de GABA-A/biossíntese , Ácido gama-Aminobutírico/metabolismo
12.
Cell Metab ; 25(3): 739-748, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28215844

RESUMO

The etiology of hypertension, the world's biggest killer, remains poorly understood, with treatments targeting the established symptom, not the cause. The development of hypertension involves increased sympathetic nerve activity that, in experimental hypertension, may be driven by excessive respiratory modulation. Using selective viral and cell lesion techniques, we identify adrenergic C1 neurons in the medulla oblongata as critical for respiratory-sympathetic entrainment and the development of experimental hypertension. We also show that a cohort of young, normotensive humans, selected for an exaggerated blood pressure response to exercise and thus increased hypertension risk, has enhanced respiratory-related blood pressure fluctuations. These studies pinpoint a specific neuronal target for ameliorating excessive sympathetic activity during the developmental phase of hypertension and identify a group of pre-hypertensive subjects that would benefit from targeting these cells.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/fisiopatologia , Respiração , Envelhecimento/fisiologia , Animais , Neurônios/fisiologia , Ratos Endogâmicos SHR , Sistema Nervoso Simpático/fisiopatologia , Sinapses/fisiologia
13.
Proteomics ; 16(22): 2894-2910, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27588558

RESUMO

Caffeine is a psychostimulant commonly consumed with high levels of sugar. The increased availability of highly caffeinated, high sugar energy drinks could put some consumers at risk of being exposed to high doses of caffeine and sugar. Notably, research that has examined the consequences of this combination is limited. Here, we explored the effect of chronic exposure to caffeine and/or sugar on behavior and protein levels in the orbitofrontal cortex (OFC) of rats. The OFC brain region has been implicated in neuropsychiatric conditions, including obesity and addiction behaviors. Adult male Sprague-Dawley rats were treated for 26 days with control, caffeine (0.6 g/L), 10% sugar, or combination of both. Locomotor behavior was measured on the first and last day of treatment, then 1 week after treatment. Two hours following final behavioral testing, brains were rapidly removed and prepared for proteomic analysis of the OFC. Label-free quantitative shotgun analysis revealed that 21, 12, and 23% of proteins identified in the OFC were differentially expressed by sugar and/or caffeine. The results demonstrate that the intake of high levels of sugar and/or low to moderate levels of caffeine has different behavioral consequences. Moreover, each treatment results in a unique proteomic profile with different implications for neural health.


Assuntos
Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Carboidratos da Dieta/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Proteoma/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Bebidas/efeitos adversos , Cafeína/efeitos adversos , Estimulantes do Sistema Nervoso Central/efeitos adversos , Carboidratos da Dieta/efeitos adversos , Locomoção/efeitos dos fármacos , Masculino , Córtex Pré-Frontal/fisiologia , Proteoma/análise , Proteômica , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
14.
Neuropharmacology ; 111: 107-118, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27580848

RESUMO

Psychotic disorders, such as schizophrenia, are characterized by prevalent and persistent executive deficits that are believed to be the result of dysfunctional inhibitory gamma-aminobutyric acid (GABA) processing of the prefrontal cortex (PFC). Methamphetamine (METH) is a commonly used psychostimulant that can induce psychotic and cognitive symptoms that are indistinguishable to schizophrenia, suggesting that METH-induced psychosis may have a similar GABAergic profile of the PFC. As the PFC consists of multiple subregions, the aim of the current study was to investigate changes to GABAergic mRNA expression in the prelimbic (PRL) and orbitofrontal (OFC) cortices of the PFC in rats sensitized to repeated METH administration. Male Sprague Dawley rats underwent daily METH or saline injections for 7 days. Following 14 days of withdrawal, rats were challenged with acute METH administration, RNA was isolated from the PRL and OFC and quantitative PCR was used to compare the relative expression of GABA enzymes, transporters, metabolites and receptor subunits. GAD67, GAD65, GAT1, GAT3, VGAT and GABAT mRNA expression were upregulated in the PRL. Ionotropic GABAA receptor subunits α1, α3, α5 and ß2 were specifically upregulated in the OFC. These findings suggest that alterations to GABAergic mRNA expression following sensitization to METH are biologically dissociated between the OFC and PRL, suggesting that GABAergic gene expression is significantly altered following chronic METH exposure in a brain-region and GABA-specific manner. These changes may lead to profound consequences on central inhibitory mechanisms of localized regions of the PFC and may underpin common behavioral phenotypes seen across psychotic disorders.


Assuntos
Metanfetamina/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Transtornos Psicóticos/metabolismo , Receptores de GABA/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Glutamato Descarboxilase/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
15.
J Proteome Res ; 15(5): 1455-71, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-26941107

RESUMO

Caffeine is a plant-derived psychostimulant and a common additive found in a wide range of foods and pharmaceuticals. The orbitofrontal cortex (OFC) is rapidly activated by flavours, integrates gustatory and olfactory information, and plays a critical role in decision-making, with dysfunction contributing to psychopathologies and neurodegenerative conditions. This study investigated whether long-term consumption of caffeine causes changes to behavior and protein expression in the OFC. Male adult Sprague-Dawley rats (n = 8 per group) were treated for 26 days with either water or a 0.6 g/L caffeine solution. Locomotor behavior was measured on the first and last day of treatment, then again after 9 days treatment free following exposure to a mild stressor. When tested drug free, caffeine-treated animals were hyperactive compared to controls. Two hours following final behavioral testing, brains were rapidly removed and prepared for proteomic analysis of the OFC. Label free shotgun proteomics found 157 proteins differentially expressed in the caffeine-drinking rats compared to control. Major proteomic effects were seen for cell-to-cell communication, cytoskeletal regulation, and mitochondrial function. Similar changes have been observed in neurological disorders including Alzheimer's disease, Parkinson's disease, and schizophrenia.


Assuntos
Cafeína/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Córtex Pré-Frontal/química , Proteômica/métodos , Animais , Comunicação Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Perfilação da Expressão Gênica , Masculino , Mitocôndrias/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Doenças do Sistema Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley
16.
J Comp Neurol ; 524(2): 323-42, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26131686

RESUMO

Somatostatin (SST) or agonists of the SST-2 receptor (sst2 ) in the rostral ventrolateral medulla (RVLM) lower sympathetic nerve activity, arterial pressure, and heart rate, or when administered within the Bötzinger region, evoke apneusis. Our aims were to describe the mechanisms responsible for the sympathoinhibitory effects of SST on bulbospinal neurons and to identify likely sources of RVLM SST release. Patch clamp recordings were made from bulbospinal RVLM neurons (n = 31) in brainstem slices prepared from juvenile rat pups. Overall, 58% of neurons responded to SST, displaying an increase in conductance that reversed at -93 mV, indicative of an inwardly rectifying potassium channel (GIRK) mechanism. Blockade of sst2 abolished this effect, but application of tetrodotoxin did not, indicating that the SST effect is independent of presynaptic activity. Fourteen bulbospinal RVLM neurons were recovered for immunohistochemistry; nine were SST-insensitive and did not express sst2a . Three out of five responsive neurons were sst2a -immunoreactive. Neurons that contained preprosomatostatin mRNA and cholera-toxin-B retrogradely transported from the RVLM were detected in: paratrigeminal nucleus, lateral parabrachial nucleus, Kölliker-Fuse nucleus, ventrolateral periaqueductal gray area, central nucleus of the amygdala, sublenticular extended amygdala, interstitial nucleus of the posterior limb of the anterior commissure nucleus, and bed nucleus of the stria terminalis. Thus, those brain regions are putative sources of endogenous SST release that, when activated, may evoke sympathoinhibitory effects via interactions with subsets of sympathetic premotor neurons that express sst2 .


Assuntos
Bulbo/citologia , Neurônios/metabolismo , Somatostatina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Toxina da Cólera/metabolismo , Células HEK293 , Hormônios/farmacologia , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , Bulbo/crescimento & desenvolvimento , Microinjeções , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Substância Cinzenta Periaquedutal/citologia , Ratos , Ratos Sprague-Dawley , Receptores da Neurocinina-1/metabolismo , Receptores de Somatostatina/metabolismo , Somatostatina/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Respir Physiol Neurobiol ; 226: 87-93, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26563455

RESUMO

Threatening stimuli trigger rapid and coordinated behavioral responses supported by cardiorespiratory changes. The midbrain colliculi can generate coordinated orienting or defensive behavioral responses, and it has been proposed that collicular neurons also generate appropriate cardiovascular and respiratory responses to support such behaviors. We have shown previously that under conditions where collicular neurons are disinhibited, coordinated cardiovascular, somatomotor and respiratory responses can be evoked independently of the cortex by auditory, visual and somatosensory stimuli. Here we report that these natural stimuli effectively increase inspiratory time most likely though phase switching. As a result the pattern of phrenic and sympathetic coupling is an inspiratory-related sympathoexcitation. We propose that blockade of tonic GABAergic input in the midbrain colliculi permits alerting stimuli to drive command neurons that generate coordinated cardiovascular, respiratory and motor outputs. The outputs of these command neurons likely interact with the central respiratory pattern generator, however the precise output pathways mediating the coordinated autonomic and respiratory responses remain to be determined.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Colículos Inferiores/fisiologia , Respiração , Sensação/fisiologia , Colículos Superiores/fisiologia , Animais , Geradores de Padrão Central/fisiologia , Neurônios/fisiologia , Ácido gama-Aminobutírico/metabolismo
18.
J Comp Neurol ; 524(7): 1384-98, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26470751

RESUMO

Microinjection of somatostatin (SST) causes site-specific effects on respiratory phase transition, frequency, and amplitude when microinjected into the ventrolateral medulla (VLM) of the anesthetized rat, suggesting selective expression of SST receptors on different functional classes of respiratory neurons. Of the six subtypes of SST receptor, somatostatin 2a (sst2a ) is the most prevalent in the VLM, and other investigators have suggested that glutamatergic neurons in the preBötzinger Complex (preBötC) that coexpress neurokinin-1 receptor (NK1R), SST, and sst2a are critical for the generation of respiratory rhythm. However, quantitative data describing the distribution of sst2a in respiratory compartments other than preBötC, or on functionally identified respiratory neurons, is absent. Here we examine the medullary expression of sst2a with particular reference to glycinergic/expiratory neurons in the Bötzinger Complex (BötC) and NK1R-immunoreactive/inspiratory neurons in the preBötC. We found robust sst2a expression at all rostrocaudal levels of the VLM, including a large proportion of catecholaminergic neurons, but no colocalization of sst2a and glycine transporter 2 mRNA in the BötC. In the preBötC 54% of sst2a -immunoreactive neurons were also positive for NK1R. sst2a was not observed in any of 52 dye-labeled respiratory interneurons, including seven BötC expiratory-decrementing and 11 preBötC preinspiratory neurons. We conclude that sst2a is not expressed on BötC respiratory neurons and that phasic respiratory activity is a poor predictor of sst2a expression in the preBötC. Therefore, sst2a is unlikely to underlie responses to BötC SST injection, and is sparse or absent on respiratory neurons identified by classical functional criteria. J. Comp. Neurol. 524:1384-1398, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Neurônios Motores/metabolismo , Receptores de Somatostatina/metabolismo , Centro Respiratório/citologia , Animais , Biofísica , Colina O-Acetiltransferase/metabolismo , Dextranos/metabolismo , Estimulação Elétrica , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Microinjeções , Neurônios Motores/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores da Neurocinina-1/metabolismo , Receptores de Somatostatina/genética , Centro Respiratório/efeitos dos fármacos , Rodaminas/metabolismo , Somatostatina/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo
19.
J Pharmacol Exp Ther ; 356(2): 424-33, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26578265

RESUMO

The ventrolateral medulla contains presympathetic and vagal preganglionic neurons that control vasomotor and cardiac vagal tone, respectively. G protein-coupled receptors influence the activity of these neurons. Gα s activates adenylyl cyclases, which drive cyclic adenosine monophosphate (cAMP)-dependent targets: protein kinase A (PKA), the exchange protein activated by cAMP (EPAC), and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. The aim was to determine the cardiovascular effects of activating and inhibiting these targets at presympathetic and cardiac vagal preganglionic neurons. Urethane-anesthetized rats were instrumented to measure splanchnic sympathetic nerve activity (sSNA), arterial pressure (AP), heart rate (HR), as well as baroreceptor and somatosympathetic reflex function, or were spinally transected and instrumented to measure HR, AP, and cardiac baroreflex function. All drugs were injected bilaterally. In the rostral ventrolateral medulla (RVLM), Sp-cAMPs and 8-Br-cAMP, which activate PKA, as well as 8-pCPT, which activates EPAC, increased sSNA, AP, and HR. Sp-cAMPs also facilitated the reflexes tested. Sp-cAMPs also increased cardiac vagal drive and facilitated cardiac baroreflex sensitivity. Blockade of PKA, using Rp-cAMPs or H-89 in the RVLM, increased sSNA, AP, and HR and increased HR when cardiac vagal preganglionic neurons were targeted. Brefeldin A, which inhibits EPAC, and ZD7288, which inhibits HCN channels, each alone had no effect. Cumulative, sequential blockade of all three inhibitors resulted in sympathoinhibition. The major findings indicate that Gα s-linked receptors in the ventral medulla can be recruited to drive both sympathetic and parasympathetic outflows and that tonically active PKA-dependent signaling contributes to the maintenance of both sympathetic vasomotor and cardiac vagal tone.


Assuntos
Pressão Sanguínea/fisiologia , AMP Cíclico/farmacologia , Frequência Cardíaca/fisiologia , Bulbo/fisiologia , Transdução de Sinais/fisiologia , Nervo Vago/fisiologia , Animais , Barorreflexo/efeitos dos fármacos , Barorreflexo/fisiologia , Pressão Sanguínea/efeitos dos fármacos , AMP Cíclico/análogos & derivados , Frequência Cardíaca/efeitos dos fármacos , Masculino , Bulbo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiologia , Nervo Vago/efeitos dos fármacos
20.
J Physiol ; 594(3): 763-80, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26584821

RESUMO

KEY POINTS: Methamphetamine (METH) abuse is escalating worldwide, with the most common cause of death resulting from cardiovascular failure and hyperthermia; however, the underlying physiological mechanisms are poorly understood. Systemic administration of METH in anaesthetised rats reduced the effectiveness of some protective cardiorespiratory reflexes, increased central respiratory activity independently of metabolic function, and increased heart rate, metabolism and respiration in a pattern indicating that non-shivering thermogenesis contributes to the well-described hyperthermia. In animals that showed METH-induced behavioural sensitisation following chronic METH treatment, no changes were evident in baseline cardiovascular, respiratory and metabolic measures and the METH-evoked effects in these parameters were similar to those seen in saline-treated or drug naïve animals. Physiological effects evoked by METH were retained but were neither facilitated nor depressed following chronic treatment with METH. These data highlight and identify potential mechanisms for targeted intervention in patients vulnerable to METH overdose. Methamphetamine (METH) is known to promote cardiovascular failure or life-threatening hyperthermia; however, there is still limited understanding of the mechanisms responsible for evoking the physiological changes. In this study, we systematically determined the effects on both autonomic and respiratory outflows, as well as reflex function, following acute and repeated administration of METH, which enhances behavioural responses. Arterial pressure, heart rate, phrenic nerve discharge amplitude and frequency, lumbar and splanchnic sympathetic nerve discharge, interscapular brown adipose tissue and core temperatures, and expired CO2 were measured in urethane-anaesthetised male Sprague-Dawley rats. Novel findings include potent increases in central inspiratory drive and frequency that are not dependent on METH-evoked increases in expired CO2 levels. Increases in non-shivering thermogenesis correlate with well-described increases in body temperature and heart rate. Unexpectedly, METH evoked minor effects on both sympathetic outflows and mean arterial pressure. METH modified cardiorespiratory reflex function in response to hypoxia, hypercapnia and baroreceptor unloading. Chronically METH-treated rats failed to exhibit changes in baseline sympathetic, cardiovascular, respiratory and metabolic parameters. The tonic and reflex cardiovascular, respiratory and metabolic responses to METH challenge were similar to those seen in saline-treated and drug naive animals. Overall, these findings describe independent and compound associations between physiological systems evoked by METH and serve to highlight that a single dose of METH can significantly impact basic homeostatic systems and protective functions. These effects of METH persist even following chronic METH treatment.


Assuntos
Metanfetamina/farmacologia , Tecido Adiposo Marrom/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Região Lombossacral/fisiologia , Masculino , Atividade Motora/efeitos dos fármacos , Nervo Frênico/fisiologia , Ratos Sprague-Dawley , Reflexo/efeitos dos fármacos , Respiração/efeitos dos fármacos , Nervos Esplâncnicos/fisiologia , Sistema Nervoso Simpático/fisiologia , Termogênese/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA