Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1861(8): 1992-2006, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28495207

RESUMO

BACKGROUND: Inhibition of Hsp90 is desirable due to potential downregulation of oncogenic clients. Early generation inhibitors bind to the N-terminal domain (NTD) but C-terminal domain (CTD) inhibitors are a promising class because they do not induce a heat shock response. Here we present a new structural class of CTD binding molecules with a unique allosteric inhibition mechanism. METHODS: A hit molecule, NSC145366, and structurally similar probes were assessed for inhibition of Hsp90 activities. A ligand-binding model was proposed indicating a novel Hsp90 CTD binding site. Client protein downregulation was also determined. RESULTS: NSC145366 interacts with the Hsp90 CTD and has anti-proliferative activity in tumor cell lines (GI50=0.2-1.9µM). NSC145366 increases Hsp90 oligomerization resulting in allosteric inhibition of NTD ATPase activity (IC50=119µM) but does not compete with NTD or CTD-ATP binding. Treatment of LNCaP prostate tumor cells resulted in selective client protein downregulation including AR and BRCA1 but without a heat shock response. Analogs had similar potencies in ATPase and chaperone activity assays and variable effects on oligomerization. In silico modeling predicted a binding site at the CTD dimer interface distinct from the nucleotide-binding site. CONCLUSIONS: A set of symmetrical scaffold molecules with bisphenol A cores induced allosteric inhibition of Hsp90. Experimental evidence and molecular modeling suggest that the binding site is independent of the CTD-ATP site and consistent with unique induction of allosteric effects. GENERAL SIGNIFICANCE: Allosteric inhibition of Hsp90 via a mechanism used by the NSC145366-based probes is a promising avenue for selective oncogenic client downregulation.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Adenosina Trifosfatases/antagonistas & inibidores , Regulação Alostérica , Proteína BRCA1/análise , Compostos Benzidrílicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Regulação para Baixo , Proteínas de Choque Térmico HSP90/química , Humanos , Modelos Moleculares , Fenóis/farmacologia , Domínios Proteicos , Multimerização Proteica
2.
SLAS Discov ; 22(6): 706-719, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28346089

RESUMO

Compounds that modulate the heat shock protein (HSP) network have potential in a broad range of research applications and diseases. A yeast-based liquid culture assay that measured time-dependent turbidity enabled the high-throughput screening of different Saccharomyces cerevisae strains to identify HSP modulators with unique molecular mechanisms. A focused set of four strains, with differing sensitivities to Hsp90 inhibitors, was used to screen a compound library of 3680 compounds. Computed turbidity curve functions were used to classify strain responses and sensitivity to chemical effects across the compound library. Filtering based on single-strain selectivity identified nine compounds as potential heat shock modulators, including the known Hsp90 inhibitor macbecin. Haploid yeast deletion strains (360), mined from previous Hsp90 inhibitor yeast screens and heat shock protein interaction data, were screened for differential sensitivities to known N-terminal ATP site-directed Hsp90 inhibitors to reveal functional distinctions. Strains demonstrating differential sensitivity (13) to Hsp90 inhibitors were used to prioritize primary screen hit compounds, with NSC145366 emerging as the lead hit. Our follow-up biochemical and functional studies show that NSC145366 directly interacts and inhibits the C-terminus of Hsp90, validating the platform as a powerful approach for early-stage identification of bioactive modulators of heat shock-dependent pathways.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Transdução de Sinais/efeitos dos fármacos , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/genética , Haploidia , Ensaios de Triagem em Larga Escala , Humanos , Estrutura Molecular , Fenótipo , Deleção de Sequência , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
3.
J Biol Chem ; 290(41): 24816-34, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26306045

RESUMO

The Saccharomyces cerevisiae heat shock protein Hsp31 is a stress-inducible homodimeric protein that is involved in diauxic shift reprogramming and has glyoxalase activity. We show that substoichiometric concentrations of Hsp31 can abrogate aggregation of a broad array of substrates in vitro. Hsp31 also modulates the aggregation of α-synuclein (αSyn), a target of the chaperone activity of human DJ-1, an Hsp31 homolog. We demonstrate that Hsp31 is able to suppress the in vitro fibrillization or aggregation of αSyn, citrate synthase and insulin. Chaperone activity was also observed in vivo because constitutive overexpression of Hsp31 reduced the incidence of αSyn cytoplasmic foci, and yeast cells were rescued from αSyn-generated proteotoxicity upon Hsp31 overexpression. Moreover, we showed that Hsp31 protein levels are increased by H2O2, in the diauxic phase of normal growth conditions, and in cells under αSyn-mediated proteotoxic stress. We show that Hsp31 chaperone activity and not the methylglyoxalase activity or the autophagy pathway drives the protective effects. We also demonstrate reduced aggregation of the Sup35 prion domain, PrD-Sup35, as visualized by fluorescent protein fusions. In addition, Hsp31 acts on its substrates prior to the formation of large aggregates because Hsp31 does not mutually localize with prion aggregates, and it prevents the formation of detectable in vitro αSyn fibrils. These studies establish that the protective role of Hsp31 against cellular stress is achieved by chaperone activity that intervenes early in the protein misfolding process and is effective on a wide spectrum of substrate proteins, including αSyn and prion proteins.


Assuntos
Proteínas de Choque Térmico/metabolismo , Estresse Oxidativo , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Proteínas de Choque Térmico/química , Humanos , Ácido Láctico/metabolismo , Lactoilglutationa Liase/metabolismo , Dados de Sequência Molecular , Príons/química , Agregados Proteicos , Multimerização Proteica , Estrutura Quaternária de Proteína , Aldeído Pirúvico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Saccharomyces cerevisiae/química , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...