Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Clin Exp Immunol ; 217(1): 99-108, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38546123

RESUMO

Oral rotavirus vaccines demonstrate diminished immunogenicity in low-income settings where human cytomegalovirus infection is acquired early in childhood and modulates immunity. We hypothesized that human cytomegalovirus infection around the time of vaccination may influence immunogenicity. We measured plasma human cytomegalovirus-specific immunoglobulin M antibodies in rotavirus vaccinated infants from 6 weeks to 12 months old and compared rotavirus immunoglobulin A antibody titers between human cytomegalovirus seropositive and seronegative infants. There was no evidence of an association between human cytomegalovirus serostatus at 9 months and rotavirus-specific antibody titers at 12 months (geometric mean ratio 1.01, 95% CI: 0.70, 1.45; P = 0.976) or fold-increase in RV-IgA titer between 9 and 12 months (risk ratio 0.999, 95%CI: 0.66, 1.52; P = 0.995) overall. However, HIV-exposed-uninfected infants who were seropositive for human cytomegalovirus at 9 months old had a 63% reduction in rotavirus antibody geometric mean titers at 12 months compared to HIV-exposed-uninfected infants who were seronegative for human cytomegalovirus (geometric mean ratio 0.37, 95% CI: 0.17, 0.77; P = 0.008). While the broader implications of human cytomegalovirus infections on oral rotavirus vaccine response might be limited in the general infant population, the potential impact in the HIV-exposed-uninfected infants cannot be overlooked. This study highlights the complexity of immunological responses and the need for targeted interventions to ensure oral rotavirus vaccine efficacy, especially in vulnerable subpopulations.


Assuntos
Anticorpos Antivirais , Infecções por Citomegalovirus , Citomegalovirus , Infecções por HIV , Infecções por Rotavirus , Vacinas contra Rotavirus , Humanos , Vacinas contra Rotavirus/imunologia , Vacinas contra Rotavirus/administração & dosagem , Citomegalovirus/imunologia , Lactente , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/prevenção & controle , Infecções por HIV/imunologia , Masculino , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/prevenção & controle , Feminino , Imunogenicidade da Vacina/imunologia , Rotavirus/imunologia , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Administração Oral , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Vacinação
2.
Vaccines (Basel) ; 11(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36851224

RESUMO

Oral rotavirus vaccines show diminished immunogenicity in low-resource settings where rotavirus burden is highest. This study assessed the safety and immune boosting effect of a third dose of oral ROTARIX® (GlaxoSmithKline) vaccine administered at 9 months of age. A total of 214 infants aged 6 to 12 weeks were randomised to receive two doses of ROTARIX® as per standard schedule with other routine vaccinations or an additional third dose of ROTARIX® administered at 9 months old concomitantly with measles/rubella vaccination. Plasma collected pre-vaccination, 1 month after first- and second-dose vaccination, at 9 months old before receipt of third ROTARIX® dose and/or measles/rubella vaccination, and at 12 months old were assayed for rotavirus-specific IgA (RV-IgA). Geometric mean RV-IgA at 12 months of age and the incidence of clinical adverse events 1 month following administration of the third dose of ROTARIX® among infants in the intervention arm were compared between infants in the two arms. We found no significant difference in RV-IgA titres at 12 months between the two arms. Our findings showed that rotavirus vaccines are immunogenic in Zambian infants but with modest vaccine seroconversion rates in low-income settings. Importantly, however, a third dose of oral ROTARIX® vaccine was shown to be safe when administered concomitantly with measles/rubella vaccine at 9 months of age in Zambia. This speaks to opportunities for enhancing rotavirus vaccine immunity within feasible schedules in the national immunization program.

3.
Vaccines (Basel) ; 10(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35746491

RESUMO

Natural killer cells play an important role in the control of viral infections both by regulating acquired immune responses and as potent innate or antibody-mediated cytotoxic effector cells. NK cells have been implicated in control of Ebola virus infections and our previous studies in European trial participants have demonstrated durable activation, proliferation and antibody-dependent NK cell activation after heterologous two-dose Ebola vaccination with adenovirus type 26.ZEBOV followed by modified vaccinia Ankara-BN-Filo. Regional variation in immunity and environmental exposure to pathogens, in particular human cytomegalovirus, have profound impacts on NK cell functional capacity. We therefore assessed the NK cell phenotype and function in African trial participants with universal exposure to HCMV. We demonstrate a significant redistribution of NK cell subsets after vaccine dose two, involving the enrichment of less differentiated CD56dimCD57- and CD56dimFcεR1γ+ (canonical) cells and the increased proliferation of these subsets. Sera taken after vaccine dose two support robust antibody-dependent NK cell activation in a standard NK cell readout; these responses correlate strongly with the concentration of anti-Ebola glycoprotein specific antibodies. These sera also promote comparable IFN-γ production in autologous NK cells taken at baseline and post-vaccine dose two. However, degranulation responses of post-vaccination NK cells were reduced compared to baseline NK cells and these effects could not be directly attributed to alterations in NK cell phenotype after vaccination. These studies demonstrate consistent changes in NK cell phenotypic composition and robust antibody-dependent NK cell function and reveal novel characteristics of these responses after heterologous two dose Ebola vaccination in African individuals.

4.
Viruses ; 14(3)2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35336866

RESUMO

Cellular immunity against rotavirus in children is incompletely understood. This review describes the current understanding of T-cell immunity to rotavirus in children. A systematic literature search was conducted in Embase, MEDLINE, Web of Science, and Global Health databases using a combination of "t-cell", "rotavirus" and "child" keywords to extract data from relevant articles published from January 1973 to March 2020. Only seventeen articles were identified. Rotavirus-specific T-cell immunity in children develops and broadens reactivity with increasing age. Whilst occurring in close association with antibody responses, T-cell responses are more transient but can occur in absence of detectable antibody responses. Rotavirus-induced T-cell immunity is largely of the gut homing phenotype and predominantly involves Th1 and cytotoxic subsets that may be influenced by IL-10 Tregs. However, rotavirus-specific T-cell responses in children are generally of low frequencies in peripheral blood and are limited in comparison to other infecting pathogens and in adults. The available research reviewed here characterizes the T-cell immune response in children. There is a need for further research investigating the protective associations of rotavirus-specific T-cell responses against infection or vaccination and the standardization of rotavirus-specific T-cells assays in children.


Assuntos
Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Humanos , Linfócitos T , Vacinação
5.
Clin Transl Immunology ; 10(1): e1244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33505682

RESUMO

Natural killer cells constitute a phenotypically diverse population of innate lymphoid cells with a broad functional spectrum. Classically defined as cytotoxic lymphocytes with the capacity to eliminate cells lacking self-MHC or expressing markers of stress or neoplastic transformation, critical roles for NK cells in immunity to infection in the regulation of immune responses and as vaccine-induced effector cells have also emerged. A crucial feature of NK cell biology is their capacity to integrate signals from pathogen-, tumor- or stress-induced innate pathways and from antigen-specific immune responses. The extent to which innate and acquired immune mediators influence NK cell effector function is influenced by the maturation and differentiation state of the NK cell compartment; moreover, NK cell differentiation is driven in part by exposure to infection. Pathogens can thus mould the NK cell response to maximise their own success and/or minimise the damage they cause. Here, we review recent evidence that pathogen- and vaccine-derived signals influence the differentiation, adaptation and subsequent effector function of human NK cells.

6.
NPJ Vaccines ; 6(1): 19, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514756

RESUMO

Natural killer (NK) cells are implicated among immune effectors after vaccination against viral pathogens, including Ebola virus. The two-dose heterologous Ebola virus vaccine regimen, adenovirus type 26.ZEBOV followed by modified vaccinia Ankara-BN-Filo (EBOVAC2 consortium, EU Innovative Medicines Initiative), induces NK cell activation and anti-Ebola glycoprotein (GP) antibody-dependent NK cell activation post-dose 1, which is further elevated post-dose 2. Here, in a multicentre, phase 2 clinical trial (EBL2001), we demonstrate durable ex vivo NK cell activation 180 days after dose 2, with responses enriched in CD56bright NK cells. In vitro antibody-dependent responses to immobilised Ebola GP increased after dose 1, and remained elevated compared to pre-vaccination levels in serum collected 180 days later. Peak NK cell responses were observed post-dose 2 and NK cell IFN-γ responses remained significantly elevated at 180 days post-dose 2. Individual variation in NK cell responses were influenced by both anti-Ebola GP antibody concentrations and intrinsic interindividual differences in NK cell functional capacity. In summary, this study demonstrates durable NK cell responses after Ad26.ZEBOV, MVA-BN-Filo Ebola virus vaccination and could inform the immunological evaluation of future iterations of the vaccine regimen and vaccination schedules.

7.
J Infect Dis ; 223(7): 1171-1182, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-31821493

RESUMO

BACKGROUND: Antibody Fc-mediated functions, such as antibody-dependent cellular cytotoxicity, contribute to vaccine-induced protection against viral infections. Fc-mediated function of anti-Ebola glycoprotein (GP) antibodies suggest that Fc-dependent activation of effector cells, including natural killer (NK) cells, could play a role in vaccination against Ebola virus disease. METHODS: We analyzed the effect on primary human NK cell activation of anti-Ebola GP antibody in the serum of United Kingdom-based volunteers vaccinated with the novel 2-dose heterologous adenovirus type 26.ZEBOV, modified vaccinia Ankara-BN-Filo vaccine regimen. RESULTS: We demonstrate primary human NK cell CD107a and interferon γ expression, combined with down-regulation of CD16, in response to recombinant Ebola virus GP and post-vaccine dose 1 and dose 2 serum samples. These responses varied significantly with vaccine regimen, and NK cell activation was found to correlate with anti-GP antibody concentration. We also reveal an impact of NK cell differentiation phenotype on antibody-dependent NK cell activation, with highly differentiated CD56dimCD57+ NK cells being the most responsive. CONCLUSIONS: These findings highlight the dual importance of vaccine-induced antibody concentration and NK cell differentiation status in promoting Fc-mediated activation of NK cells after vaccination, raising a potential role for antibody-mediated NK cell activation in vaccine-induced immune responses.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Vacinas contra Ebola , Doença pelo Vírus Ebola , Células Matadoras Naturais/imunologia , Anticorpos Antivirais/sangue , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Vacinação , Proteínas Virais/imunologia
8.
Front Immunol ; 11: 594107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343571

RESUMO

Innate lymphoid cell (ILC) lineages mirror those of CD4+ T helper cell subsets, producing type 1, 2 and 3 cytokines respectively. Studies in adult human populations have shown contributions of non-cytotoxic ILC to immune regulation or pathogenesis in a wide range of diseases and have prompted investigations of potential functional redundancy between ILC and T helper cell compartments in neonates and children. To investigate the potential for ILC to contribute to immune responses across the human lifespan, we examined the numbers and frequencies of peripheral blood ILC subsets in a cohort of Gambians aged between 5 and 73 years of age. ILC2 were the most abundant peripheral blood ILC subset in this Gambian cohort, while ILC1 were the rarest at all ages. Moreover, the frequency of ILC1s (as a proportion of all lymphocytes) was remarkably stable over the life course whereas ILC3 cell frequencies and absolute numbers declined steadily across the life course and ILC2 frequencies and absolute numbers declined from childhood until the age of approx. 30 years of age. Age-related reductions in ILC2 cell numbers appeared to be partially offset by increasing numbers of total and GATA3+ central memory (CD45RA-CCR7+) CD4+ T cells, although there was also a gradual decline in numbers of total and GATA3+ effector memory (CD45RA-CCR7-) CD4+ T cells. Despite reduced overall abundance of ILC2 cells, we observed a coincident increase in the proportion of CD117+ ILC2, indicating potential for age-related adaptation of these cells in childhood and early adulthood. While both CD117+ and CD117- ILC2 cells produced IL-13, these responses occurred predominantly within CD117- cells. Furthermore, comparison of ILC frequencies between aged-matched Gambian and UK young adults (25-29 years) revealed an overall higher proportion of ILC1 and ILC2, but not ILC3 in Gambians. Thus, these data indicate ongoing age-related changes in ILC2 cells throughout life, which retain the capacity to differentiate into potent type 2 cytokine producing cells, consistent with an ongoing role in immune modulation.


Assuntos
Imunidade Inata , Contagem de Linfócitos , Linfócitos/imunologia , Adolescente , Adulto , Fatores Etários , Idoso , Envelhecimento/sangue , Envelhecimento/imunologia , Biomarcadores , População Negra , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Memória Imunológica , Imunofenotipagem , Interleucina-13/metabolismo , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-kit/metabolismo , Adulto Jovem
9.
J Clin Invest ; 130(7): 3936-3946, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32315287

RESUMO

BACKGROUNDNK cells are activated by innate cytokines and viral ligands to kill virus-infected cells. These functions are enhanced during secondary immune responses and after vaccination by synergy with effector T cells and virus-specific antibodies. In human Ebola virus infection, clinical outcome is strongly associated with the initial innate cytokine response, but the role of NK cells has not been thoroughly examined.METHODSThe novel 2-dose heterologous Adenovirus type 26.ZEBOV (Ad26.ZEBOV) and modified vaccinia Ankara-BN-Filo (MVA-BN-Filo) vaccine regimen is safe and provides specific immunity against Ebola glycoprotein, and is currently in phase 2 and 3 studies. Here, we analyzed NK cell phenotype and function in response to Ad26.ZEBOV, MVA-BN-Filo vaccination regimen and in response to in vitro Ebola glycoprotein stimulation of PBMCs isolated before and after vaccination.RESULTSWe show enhanced NK cell proliferation and activation after vaccination compared with baseline. Ebola glycoprotein-induced activation of NK cells was dependent on accessory cells and TLR-4-dependent innate cytokine secretion (predominantly from CD14+ monocytes) and enriched within less differentiated NK cell subsets. Optimal NK cell responses were dependent on IL-18 and IL-12, whereas IFN-γ secretion was restricted by high concentrations of IL-10.CONCLUSIONThis study demonstrates the induction of NK cell effector functions early after Ad26.ZEBOV, MVA-BN-Filo vaccination and provides a mechanism for the activation and regulation of NK cells by Ebola glycoprotein.TRIAL REGISTRATIONClinicalTrials.gov NCT02313077.FUNDINGUnited Kingdom Medical Research Council Studentship in Vaccine Research, Innovative Medicines Initiative 2 Joint Undertaking, EBOVAC (grant 115861) and Crucell Holland (now Janssen Vaccines and Prevention B.V.), European Union's Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Associations (EFPIA).


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Interleucina-18/imunologia , Células Matadoras Naturais/imunologia , Proteínas do Envelope Viral/imunologia , Adolescente , Adulto , Anticorpos Antivirais/imunologia , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/genética , Ebolavirus/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/genética
10.
Front Immunol ; 11: 533, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296438

RESUMO

Human adaptive natural killer (NK) cells have diminished reliance on accessory cytokines for their activation whilst being efficiently activated by infected host cells in conjunction with pathogen specific antibodies. Here, we show that potent antibody-dependent NK cell responses are induced by Plasmodium falciparum infected erythrocytes (iRBC) in peripheral blood mononuclear cells (PBMC) from malaria-exposed Gambian individuals in the presence of autologous sera, which are absent in those from malaria-naïve UK individuals. However, malaria hyper-immune serum promotes rapid NK cell responses to iRBC in cells from both Gambian and UK individuals. Among Gambians, highly differentiated, adaptive (CD56dimFcεR1γ-CD57+) NK cells dominate both antibody-dependent NK cell IFN-γ responses and degranulation responses, whereas among UK individuals these responses are predominantly found within canonical, highly differentiated CD56dimFcεR1γ+CD57+ NK cells. Indeed, overall frequencies of adaptive, FcεR1γ-CD57+ NK cells are significantly higher among Gambian donors compared to HCMV-infected and HCMV-uninfected UK adults. Among UK individuals, antibody-dependent NK cell IFN-γ responses to iRBC were dependent on IL-18 whereas among Gambians, the predominant adaptive FcεR1γ- NK cell response was IL-18 (and accessory cell) independent (although the lower frequency response of canonical FcεR1γ NK cells did rely on this cytokine).


Assuntos
Interleucina-18/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Imunidade Adaptativa/imunologia , Adulto , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Feminino , Humanos , Imunidade Inata/imunologia , Masculino
11.
Front Immunol ; 11: 135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117282

RESUMO

Despite evidence of augmented Natural Killer (NK) cell responses after influenza vaccination, the role of these cells in vaccine-induced immunity remains unclear. Here, we hypothesized that NK cells might increase viral clearance but possibly at the expense of increased severity of pathology. On the contrary, we found that NK cells serve a homeostatic role during influenza virus infection of vaccinated mice, allowing viral clearance with minimal pathology. Using a diphtheria toxin receptor transgenic mouse model, we were able to specifically deplete NKp46+ NK cells through the administration of diphtheria toxin. Using this model, we assessed the effect of NK cell depletion prior to influenza challenge in vaccinated and unvaccinated mice. NK-depleted, vaccinated animals lost significantly more weight after viral challenge than vaccinated NK intact animals, indicating that NK cells ameliorate disease in vaccinated animals. However, there was also a significant reduction in viral load in NK-depleted, unvaccinated animals indicating that NK cells also constrain viral clearance. Depletion of NK cells after vaccination, but 21 days before infection, did not affect viral clearance or weight loss-indicating that it is the presence of NK cells during the infection itself that promotes homeostasis. Further work is needed to identify the mechanism(s) by which NK cells regulate adaptive immunity in influenza-vaccinated animals to allow efficient and effective virus control whilst simultaneously minimizing inflammation and pathology.


Assuntos
Vacinas contra Influenza/imunologia , Células Matadoras Naturais/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL
12.
Immunol Rev ; 293(1): 25-37, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31762040

RESUMO

Natural killer cells employ a diverse arsenal of effector mechanisms to target intracellular pathogens. Differentiation of natural killer (NK) cell activation pathways occurs along a continuum from reliance on innate pro-inflammatory cytokines and stress-induced host ligands through to interaction with signals derived from acquired immune responses. Importantly, the degree of functional differentiation of the NK cell lineage influences the magnitude and specificity of interactions with host cells infected with viruses, bacteria, fungi, and parasites. Individual humans possess a vast diversity of distinct NK cell clones, each with the capacity to vary along this functional differentiation pathway, which - when combined - results in unique individual responses to different infections. Here we summarize these NK cell differentiation events, review evidence for direct interaction of malaria-infected host cells with NK cells and assess how innate inflammatory signals induced by malaria parasite-associated molecular patterns influence the indirect activation and function of NK cells. Finally, we discuss evidence that anti-malarial immunity develops in parallel with advancing NK differentiation, coincident with a loss of reliance on inflammatory signals, and a refined capacity of NK cells to target malaria parasites more precisely, particularly through antibody-dependent mechanisms.


Assuntos
Adaptação Fisiológica/imunologia , Diferenciação Celular/imunologia , Interações Hospedeiro-Parasita/imunologia , Células Matadoras Naturais/imunologia , Malária/imunologia , Malária/parasitologia , Plasmodium/imunologia , Imunidade Adaptativa , Animais , Biomarcadores , Diferenciação Celular/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Interação Gene-Ambiente , Interações Hospedeiro-Parasita/genética , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Malária/genética , Malária/metabolismo , Plasmodium falciparum/imunologia
13.
J Immunol ; 203(6): 1609-1618, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31427444

RESUMO

Cytokine-induced memory-like (CIML) NK cells generated in response to proinflammatory cytokines in vitro and in vivo can also be generated by vaccination, exhibiting heightened responses to cytokine stimulation months after their initial induction. Our previous study demonstrated that in vitro human NK cell responses to inactivated influenza virus were also indirectly augmented by very low doses of IL-15, which increased induction of myeloid cell-derived cytokine secretion. These findings led us to hypothesize that IL-15 stimulation could reveal a similar effect for active influenza vaccination and influence CIML NK cell effector functions. In this study, 51 healthy adults were vaccinated with seasonal influenza vaccine, and PBMC were collected before and up to 30 d after vaccination. Myeloid and lymphoid cell cytokine secretion was measured after in vitro PBMC restimulation with low-dose IL-15, alone or in combination with inactivated H3N2 virus; the associated NK cell response was assessed by flow cytometry. PBMC collected 30 d postvaccination showed heightened cytokine production in response to IL-15 compared with PBMC collected at baseline; these responses were further enhanced when IL-15 was combined with H3N2. NK cell activation in response to IL-15 alone (CD25) and H3N2 plus IL-15 (CD25 and IFN-γ) was enhanced postvaccination. We also observed proliferation of less-differentiated NK cells with downregulation of cytokine receptors as early as 3 d after vaccination, suggesting cytokine stimulation in vivo. We conclude that vaccination-induced "training" of accessory cells combines with the generation of CIML NK cells to enhance the overall NK cell response postvaccination.


Assuntos
Citocinas/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Células Matadoras Naturais/imunologia , Células Mieloides/imunologia , Adulto , Idoso , Feminino , Humanos , Vírus da Influenza A Subtipo H3N2/imunologia , Interferon gama/imunologia , Interleucina-15/imunologia , Leucócitos Mononucleares/imunologia , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Vacinação/métodos , Adulto Jovem
14.
J Immunol ; 200(8): 2738-2747, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29491009

RESUMO

IL-15 is a key regulator of NK cell maintenance and proliferation and synergizes with other myeloid cell-derived cytokines to enhance NK cell effector function. At low concentrations, trans-presentation of IL-15 by dendritic cells can activate NK cells, whereas at higher concentrations it can act directly on NK cells, independently of accessory cells. In this study, we investigate the potential for IL-15 to boost responses to influenza virus by promoting accessory cell function. We find that coculture of human PBMCs with inactivated whole influenza virus (A/Victoria/361/2011) in the presence of very low concentrations of IL-15 results in increased production of myeloid cell-derived cytokines, including IL-12, IFN-α2, GM-CSF, and IL-1ß, and an increased frequency of polyfunctional NK cells (defined by the expression of two or more of CD107a, IFN-γ, and CD25). Neutralization experiments demonstrate that IL-15-mediated enhancement of NK cell responses is primarily dependent on IL-12 and partially dependent on IFN-αßR1 signaling. Critically, IL-15 boosted the production of IL-12 in influenza-stimulated blood myeloid dendritic cells. IL-15 costimulation also restored the ability of less-differentiated NK cells from human CMV-seropositive individuals to respond to influenza virus. These data suggest that very low concentrations of IL-15 play an important role in boosting accessory cell function to support NK cell effector functions.


Assuntos
Vírus da Influenza A/imunologia , Interleucina-12/biossíntese , Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Humanos , Influenza Humana/imunologia , Interleucina-12/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo
15.
Front Immunol ; 9: 257, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29520269

RESUMO

Tuberculosis (TB) is still a global health concern, especially in resource-poor countries such as The Gambia. Defining protective immunity to TB is challenging: its pathogenesis is complex and involves several cellular components of the immune system. Recent works in vaccine development suggest important roles of the innate immunity in natural protection to TB, including natural killer (NK) cells. NK cells mediate cellular cytotoxicity and cytokine signaling in response to Mycobacterium tuberculosis (Mtb). NK cells can display specific memory-type markers to previous antigen exposure; thus, bridging innate and adaptive immunity. However, major knowledge gaps exist on the contribution of NK cells in protection against Mtb infection or TB. We performed a cross-sectional assessment of NK cells phenotype and function in four distinct groups of individuals: TB cases pre-treatment (n = 20) and post-treatment (n = 19), and household contacts with positive (n = 9) or negative (n = 18) tuberculin skin test (TST). While NK cells frequencies were similar between all groups, significant decreases in interferon-γ expression and degranulation were observed in NK cells from TB cases pre-treatment compared to post-treatment. Conversely, CD57 expression, a marker of advanced NK cells differentiation, was significantly lower in cases post-treatment compared to pre-treatment. Finally, NKG2C, an activation and imprinted-NK memory marker, was significantly increased in TST+ (latently infected) compared to TB cases pre-treatment and TST- (uninfected) individuals. The results of this study provide valuable insights into the role of NK cells in Mtb infection and TB disease, demonstrating potential markers for distinguishing between infection states and monitoring of TB treatment response.


Assuntos
Células Matadoras Naturais/imunologia , Subpopulações de Linfócitos/imunologia , Mycobacterium tuberculosis/fisiologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/imunologia , Adolescente , Adulto , Idoso , Antituberculosos/uso terapêutico , Degranulação Celular , Estudos Transversais , Seguimentos , Gâmbia , Humanos , Memória Imunológica , Imunofenotipagem , Interferon gama/metabolismo , Ativação Linfocitária , Pessoa de Meia-Idade , Tuberculose/tratamento farmacológico , Adulto Jovem
16.
Clin Transl Immunology ; 7(1): e1010, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29484187

RESUMO

Vaccination has proved to be highly effective in reducing global mortality and eliminating infectious diseases. Building on this success will depend on the development of new and improved vaccines, new methods to determine efficacy and optimum dosing and new or refined adjuvant systems. NK cells are innate lymphoid cells that respond rapidly during primary infection but also have adaptive characteristics enabling them to integrate innate and acquired immune responses. NK cells are activated after vaccination against pathogens including influenza, yellow fever and tuberculosis, and their subsequent maturation, proliferation and effector function is dependent on myeloid accessory cell-derived cytokines such as IL-12, IL-18 and type I interferons. Activation of antigen-presenting cells by live attenuated or whole inactivated vaccines, or by the use of adjuvants, leads to enhanced and sustained NK cell activity, which in turn contributes to T cell recruitment and memory cell formation. This review explores the role of cytokine-activated NK cells as vaccine-induced effector cells and in recall responses and their potential contribution to vaccine and adjuvant development.

17.
Eur J Immunol ; 48(1): 50-65, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28960320

RESUMO

Cytomegaloviruses (CMVs) are highly prevalent, persistent human pathogens that not only evade but also shape our immune responses. Natural killer (NK) cells play an important role in the control of CMV and CMVs have in turn developed a plethora of immunoevasion mechanisms targeting NK cells. This complex interplay can leave a long-lasting imprint on the immune system in general and affect responses toward other pathogens and vaccines. This review aims to provide an overview of NK cell biology and development, the manipulation of NK cells by CMVs and the potential impact of these evasion strategies on responses to vaccination.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia , Vacinas Virais/imunologia , Animais , Antígenos Virais/imunologia , Infecções por Citomegalovirus/virologia , Humanos , Evasão da Resposta Imune/imunologia , Camundongos , Receptores Virais/imunologia , Vacinação
18.
Front Immunol ; 8: 1276, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075261

RESUMO

The mechanisms by which oral, live-attenuated vaccines protect against typhoid fever are poorly understood. Here, we analyze transcriptional responses after vaccination with Ty21a or vaccine candidate, M01ZH09. Alterations in response profiles were related to vaccine-induced immune responses and subsequent outcome after wild-type Salmonella Typhi challenge. Despite broad genetic similarity, we detected differences in transcriptional responses to each vaccine. Seven days after M01ZH09 vaccination, marked cell cycle activation was identified and associated with humoral immunogenicity. By contrast, vaccination with Ty21a was associated with NK cell activity and validated in peripheral blood mononuclear cell stimulation assays confirming superior induction of an NK cell response. Moreover, transcriptional signatures of amino acid metabolism in Ty21a recipients were associated with protection against infection, including increased incubation time and decreased severity. Our data provide detailed insight into molecular immune responses to typhoid vaccines, which could aid the rational design of improved oral, live-attenuated vaccines against enteric pathogens.

19.
Eur J Immunol ; 47(6): 1040-1050, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28383105

RESUMO

Human cytomegalovirus (HCMV) infection drives the phenotypic and functional differentiation of NK cells, thereby influencing the responses of these cells after vaccination. NK cell functional differentiation is particularly advanced in African populations with universal exposure to HCMV. To investigate the impact of advanced differentiation on vaccine-induced responses, we studied NK-cell function before and after vaccination with Trivalent Influenza Vaccine (TIV) or diphtheria, tetanus, pertussis, inactivated poliovirus vaccine (DTPiP) in Africans with universal, lifelong HCMV exposure. In contrast to populations with lower prevalence of HCMV infection, no significant enhancement of NK-cell responses (IFN-γ, CD107a, CD25) occurred after in vitro re-stimulation of post-vaccination NK cells with TIV or DTPiP antigens compared to pre-vaccination baseline cells. However, both vaccinations resulted in higher frequencies of NK cells producing IFN-γ in response to exogenous IL-12 with IL-18, which persisted for up to 6 months. Enhanced cytokine responsiveness was restricted to less differentiated NK cells, with increased frequencies of IFN-γ+ cells observed within CD56bright CD57- , CD56dim CD57- NKG2C- and CD56dim CD57- NKG2C+ NK-cell subsets. These data suggest a common mechanism whereby different vaccines enhance NK cell IFN-γ function in HCMV infected donors and raise the potential for further exploitation of NK cell "pre-activation" to improve vaccine effectiveness.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Toxoide Diftérico/imunologia , Vacinas contra Influenza/imunologia , Interferon gama/biossíntese , Interleucinas/imunologia , Células Matadoras Naturais/imunologia , Vacinas contra Poliovirus/imunologia , Toxoide Tetânico/imunologia , Adolescente , Adulto , África/epidemiologia , Idoso , Criança , Pré-Escolar , Infecções por Citomegalovirus/etnologia , Infecções por Citomegalovirus/virologia , Toxoide Diftérico/administração & dosagem , Feminino , Humanos , Imunização Secundária , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/farmacologia , Interferon gama/imunologia , Interleucina-12/imunologia , Interleucina-12/farmacologia , Interleucina-18/imunologia , Interleucina-18/farmacologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Proteína 1 de Membrana Associada ao Lisossomo/imunologia , Masculino , Pessoa de Meia-Idade , Vacinas contra Poliovirus/administração & dosagem , Toxoide Tetânico/administração & dosagem , Vacinação , Potência de Vacina , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/imunologia , Adulto Jovem
20.
Front Immunol ; 7: 384, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27725819

RESUMO

Cross-linking of FcγRIII (CD16) by immune complexes induces antibody-dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells, contributing to control of intracellular pathogens; this pathway can also be targeted for immunotherapy of cancerous or otherwise diseased cells. However, downregulation of CD16 expression on activated NK cells may limit or regulate this response. Here, we report sustained downregulation of CD16 expression on NK cells in vivo after intramuscular (but not intranasal) influenza vaccination. CD16 downregulation persisted for at least 12 weeks after vaccination and was associated with robust enhancement of influenza-specific plasma antibodies after intramuscular (but not intranasal) vaccination. This effect could be emulated in vitro by co-culture of NK cells with influenza antigen and immune serum and, consistent with the sustained effects after vaccination, only very limited recovery of CD16 expression was observed during long-term in vitro culture of immune complex-treated cells. CD16 downregulation was most marked among normally CD16high CD57+ NK cells, irrespective of NKG2C expression, and was strongly positively associated with degranulation (surface CD107a expression). CD16 downregulation was partially reversed by inhibition of ADAM17 matrix metalloprotease, leading to a sustained increase in both CD107a and CD25 (IL-2Rα) expression. Both the degranulation and CD25 responses of CD57+ NK cells were uniquely dependent on trivalent influenza vaccine-specific IgG. These data support a role for CD16 in early activation of NK cells after vaccination and for CD16 downregulation as a means to modulate NK cell responses and maintain immune homeostasis of both antibody and T cell-dependent pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA