Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
medRxiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38343792

RESUMO

There is active debate regarding how GABAergic function changes during seizure initiation and propagation, and whether interneuronal activity drives or impedes the pathophysiology. Here, we track cell-type specific firing during spontaneous human seizures to identify neocortical mechanisms of inhibitory failure. Fast-spiking interneuron activity was maximal over 1 second before equivalent excitatory increases, and showed transitions to out-of-phase firing prior to local tissue becoming incorporated into the seizure-driving territory. Using computational modeling, we linked this observation to transient saturation block as a precursor to seizure invasion, as supported by multiple lines of evidence in the patient data. We propose that transient blocking of inhibitory firing due to selective fast-spiking interneuron saturation-resulting from intense excitatory synaptic drive-is a novel mechanism that contributes to inhibitory failure, allowing seizure propagation.

2.
Cureus ; 14(1): e21562, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35228921

RESUMO

Calcifying pseudoneoplasm of the neuraxis are rare fibro-osseous lesions that can occur throughout the central nervous system. This paper reports one case of this lesion within the posterior fossa and contains a literature review of all cases documented within the posterior fossa to date. A 53-year-old female patient with a history of epiphora, facial irritation, and headaches was found to have a mass centered in the posterior fossa. The patient underwent surgical resection for removal of the mass. Upon review by pathology, the final diagnosis was consistent with calcifying pseudoneoplasm of the neuraxis.

3.
World Neurosurg ; 159: 146-155, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35033693

RESUMO

Corpus callosotomy is among the oldest surgeries performed for drug-resistant epilepsy. Since it was first performed in 1940, numerous studies have assessed its outcomes in various patient populations in addition to describing different extents of sectioning and emerging technologies (i.e., endoscopic, laser interstitial thermal therapy, and radiosurgery). To capture the current state and offer a reappraisal, we comprehensively review the origins of corpus callosotomy, efficacy for various seizure types, technical variations, complications, and indications and compare the procedure with vagus nerve stimulation therapy, which has similar indications. We consider corpus callosotomy to be a safe and efficacious procedure, which should be considered by clinicians when appropriate. Furthermore, it can play an important role in treating patients with drug-resistant epilepsy when appropriate in low-to-middle-income countries where resources are limited.


Assuntos
Epilepsia Resistente a Medicamentos , Psicocirurgia , Estimulação do Nervo Vago , Corpo Caloso/cirurgia , Epilepsia Resistente a Medicamentos/cirurgia , Humanos , Resultado do Tratamento , Estimulação do Nervo Vago/efeitos adversos
4.
J Neurosci ; 41(4): 766-779, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33229500

RESUMO

Analyzing neuronal activity during human seizures is pivotal to understanding mechanisms of seizure onset and propagation. These analyses, however, invariably using extracellular recordings, are greatly hindered by various phenomena that are well established in animal studies: changes in local ionic concentration, changes in ionic conductance, and intense, hypersynchronous firing. The first two alter the action potential waveform, whereas the third increases the "noise"; all three factors confound attempts to detect and classify single neurons. To address these analytical difficulties, we developed a novel template-matching-based spike sorting method, which enabled identification of 1239 single neurons in 27 patients (13 female) with intractable focal epilepsy, that were tracked throughout multiple seizures. These new analyses showed continued neuronal firing with widespread intense activation and stereotyped action potential alterations in tissue that was invaded by the seizure: neurons displayed increased waveform duration (p < 0.001) and reduced amplitude (p < 0.001), consistent with prior animal studies. By contrast, neurons in "penumbral" regions (those receiving intense local synaptic drive from the seizure but without neuronal evidence of local seizure invasion) showed stable waveforms. All neurons returned to their preictal waveforms after seizure termination. We conclude that the distinction between "core" territories invaded by the seizure versus "penumbral" territories is evident at the level of single neurons. Furthermore, the increased waveform duration and decreased waveform amplitude are neuron-intrinsic hallmarks of seizure invasion that impede traditional spike sorting and could be used as defining characteristics of local recruitment.SIGNIFICANCE STATEMENT Animal studies consistently show marked changes in action potential waveform during epileptic discharges, but acquiring similar evidence in humans has proven difficult. Assessing neuronal involvement in ictal events is pivotal to understanding seizure dynamics and in defining clinical localization of epileptic pathology. Using a novel method to track neuronal firing, we analyzed microelectrode array recordings of spontaneously occurring human seizures, and here report two dichotomous activity patterns. In cortex that is recruited to the seizure, neuronal firing rates increase and waveforms become longer in duration and shorter in amplitude as the neurons are recruited to the seizure, while penumbral tissue shows stable action potentials, in keeping with the "dual territory" model of seizure dynamics.


Assuntos
Eletroencefalografia , Neurônios , Convulsões/fisiopatologia , Potenciais de Ação , Adulto , Ondas Encefálicas , Córtex Cerebral/fisiopatologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recrutamento Neurofisiológico , Análise de Ondaletas , Adulto Jovem
5.
Sci Rep ; 10(1): 19166, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154490

RESUMO

High frequency oscillations (HFOs) are bursts of neural activity in the range of 80 Hz or higher, recorded from intracranial electrodes during epileptiform discharges. HFOs are a proposed biomarker of epileptic brain tissue and may also be useful for seizure forecasting. Despite such clinical utility of HFOs, the spatial context and neuronal activity underlying these local field potential (LFP) events remains unclear. We sought to further understand the neuronal correlates of ictal high frequency LFPs using multielectrode array recordings in the human neocortex and mesial temporal lobe during rhythmic onset seizures. These multiscale recordings capture single cell, multiunit, and LFP activity from the human brain. We compare features of multiunit firing and high frequency LFP from microelectrodes and macroelectrodes during ictal discharges in both the seizure core and penumbra (spatial seizure domains defined by multiunit activity patterns). We report differences in spectral features, unit-local field potential coupling, and information theoretic characteristics of high frequency LFP before and after local seizure invasion. Furthermore, we tie these time-domain differences to spatial domains of seizures, showing that penumbral discharges are more broadly distributed and less useful for seizure localization. These results describe the neuronal and synaptic correlates of two types of pathological HFOs in humans and have important implications for clinical interpretation of rhythmic onset seizures.


Assuntos
Potenciais de Ação/fisiologia , Encéfalo/fisiopatologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Neurônios/fisiologia , Convulsões/fisiopatologia , Eletroencefalografia , Humanos
6.
Elife ; 92020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32202494

RESUMO

We developed a neural network model that can account for major elements common to human focal seizures. These include the tonic-clonic transition, slow advance of clinical semiology and corresponding seizure territory expansion, widespread EEG synchronization, and slowing of the ictal rhythm as the seizure approaches termination. These were reproduced by incorporating usage-dependent exhaustion of inhibition in an adaptive neural network that receives global feedback inhibition in addition to local recurrent projections. Our model proposes mechanisms that may underline common EEG seizure onset patterns and status epilepticus, and postulates a role for synaptic plasticity in the emergence of epileptic foci. Complex patterns of seizure activity and bi-stable seizure end-points arise when stochastic noise is included. With the rapid advancement of clinical and experimental tools, we believe that this model can provide a roadmap and potentially an in silico testbed for future explorations of seizure mechanisms and clinical therapies.


Assuntos
Suscetibilidade a Doenças , Modelos Teóricos , Convulsões/diagnóstico , Convulsões/etiologia , Progressão da Doença , Eletroencefalografia , Feminino , Humanos , Masculino , Microeletrodos , Plasticidade Neuronal , Neurônios/metabolismo , Células Piramidais/metabolismo , Índice de Gravidade de Doença
7.
J Neurophysiol ; 122(5): 1861-1873, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31461373

RESUMO

We analyze the role of inhibition in sustaining focal epileptic seizure activity. We review ongoing seizure activity at the mesoscopic scale that can be observed with microelectrode arrays as well as at the macroscale of standard clinical EEG. We provide clinical, experimental, and modeling data to support the hypothesis that paroxysmal depolarization (PD) is a critical component of the ictal machinery. We present dual-patch recordings in cortical cultures showing reduced synaptic transmission associated with presynaptic occurrence of PD, and we find that the PD threshold is cell size related. We further find evidence that optically evoked PD activity in parvalbumin neurons can promote propagation of neuronal excitation in neocortical networks in vitro. Spike sorting results from microelectrode array measurements around ictal wave propagation in human focal seizures demonstrate a strong increase in putative inhibitory firing with an approaching excitatory wave, followed by a sudden reduction of firing at passage. At the macroscopic level, we summarize evidence that this excitatory ictal wave activity is strongly correlated with oscillatory activity across a centimeter-sized cortical network. We summarize Wilson-Cowan-type modeling showing how inhibitory function is crucial for this behavior. Our findings motivated us to develop a network motif of neurons in silico, governed by a reduced version of the Hodgkin-Huxley formalism, to show how feedforward, feedback, PD, and local failure of inhibition contribute to observed dynamics across network scales. The presented multidisciplinary evidence suggests that the PD not only is a cellular marker or epiphenomenon but actively contributes to seizure activity.NEW & NOTEWORTHY We present mechanisms of ongoing focal seizures across meso- and macroscales of microelectrode array and standard clinical recordings, respectively. We find modeling, experimental, and clinical evidence for a dual role of inhibition across these scales: local failure of inhibition allows propagation of a mesoscopic ictal wave, whereas inhibition elsewhere remains intact and sustains macroscopic oscillatory activity. We present evidence for paroxysmal depolarization as a mechanism behind this dual role of inhibition in shaping ictal activity.


Assuntos
Eletroencefalografia , Fenômenos Eletrofisiológicos/fisiologia , Neocórtex/fisiopatologia , Convulsões/fisiopatologia , Transmissão Sináptica/fisiologia , Humanos
8.
Int J Neural Syst ; 28(10): 1850027, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30001641

RESUMO

During neocortical seizures in patients with epilepsy, microelectrode array recordings from the ictal core show a strong correlation between the fast, cellular spiking activities and the low-frequency component of the potential field, reflected in the electrocorticogram (ECoG). Here, we model the relationship between the cellular spike activity and this low-frequency component as the input and output signals of a linear time invariant system. Our approach is based on the observation that this relationship can be characterized by a so-called sinc function, the unit impulse response of an ideal (brick-wall) filter. Accordingly, using a brick-wall filter, we are able to convert ictal cellular spike inputs into an output that significantly correlates with the observed seizure activity in the ECoG (r = 0.40 - 0.56,p < 0.01) , while ECoG recordings of subsequent seizures within patients also show significant, but lower, correlations (r = 0.10 - 0.30,p < 0.01) . Furthermore, we can produce seizure-like output signals using synthetic spike trains with ictal properties. We propose a possible physiological mechanism to explain the observed properties associated with an ideal filter, and discuss the potential use of our approach for the evaluation of anticonvulsant strategies.


Assuntos
Potenciais de Ação/fisiologia , Ondas Encefálicas/fisiologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Epilepsia/fisiopatologia , Neurônios/fisiologia , Adulto , Eletroencefalografia , Epilepsia/patologia , Feminino , Humanos , Modelos Neurológicos , Dinâmica não Linear , Adulto Jovem
9.
Proc Natl Acad Sci U S A ; 114(40): 10761-10766, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923948

RESUMO

Small-scale neuronal networks may impose widespread effects on large network dynamics. To unravel this relationship, we analyzed eight multiscale recordings of spontaneous seizures from four patients with epilepsy. During seizures, multiunit spike activity organizes into a submillimeter-sized wavefront, and this activity correlates significantly with low-frequency rhythms from electrocorticographic recordings across a 10-cm-sized neocortical network. Notably, this correlation effect is specific to the ictal wavefront and is absent interictally or from action potential activity outside the wavefront territory. To examine the multiscale interactions, we created a model using a multiscale, nonlinear system and found evidence for a dual role for feedforward inhibition in seizures: while inhibition at the wavefront fails, allowing seizure propagation, feedforward inhibition of the surrounding centimeter-scale networks is activated via long-range excitatory connections. Bifurcation analysis revealed that distinct dynamical pathways for seizure termination depend on the surrounding inhibition strength. Using our model, we found that the mesoscopic, local wavefront acts as the forcing term of the ictal process, while the macroscopic, centimeter-sized network modulates the oscillatory seizure activity.


Assuntos
Potenciais de Ação/fisiologia , Ondas Encefálicas/fisiologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsias Parciais/fisiopatologia , Neocórtex/fisiopatologia , Convulsões/fisiopatologia , Eletroencefalografia , Humanos
10.
Epilepsia ; 58(6): 994-1004, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28398014

RESUMO

OBJECTIVE: Evaluate the seizure-reduction response and safety of mesial temporal lobe (MTL) brain-responsive stimulation in adults with medically intractable partial-onset seizures of mesial temporal lobe origin. METHODS: Subjects with mesial temporal lobe epilepsy (MTLE) were identified from prospective clinical trials of a brain-responsive neurostimulator (RNS System, NeuroPace). The seizure reduction over years 2-6 postimplantation was calculated by assessing the seizure frequency compared to a preimplantation baseline. Safety was assessed based on reported adverse events. RESULTS: There were 111 subjects with MTLE; 72% of subjects had bilateral MTL onsets and 28% had unilateral onsets. Subjects had one to four leads placed; only two leads could be connected to the device. Seventy-six subjects had depth leads only, 29 had both depth and strip leads, and 6 had only strip leads. The mean follow-up was 6.1 ± (standard deviation) 2.2 years. The median percent seizure reduction was 70% (last observation carried forward). Twenty-nine percent of subjects experienced at least one seizure-free period of 6 months or longer, and 15% experienced at least one seizure-free period of 1 year or longer. There was no difference in seizure reduction in subjects with and without mesial temporal sclerosis (MTS), bilateral MTL onsets, prior resection, prior intracranial monitoring, and prior vagus nerve stimulation. In addition, seizure reduction was not dependent on the location of depth leads relative to the hippocampus. The most frequent serious device-related adverse event was soft tissue implant-site infection (overall rate, including events categorized as device-related, uncertain, or not device-related: 0.03 per implant year, which is not greater than with other neurostimulation devices). SIGNIFICANCE: Brain-responsive stimulation represents a safe and effective treatment option for patients with medically intractable epilepsy, including patients with unilateral or bilateral MTLE who are not candidates for temporal lobectomy or who have failed a prior MTL resection.


Assuntos
Encéfalo/fisiopatologia , Estimulação Encefálica Profunda/métodos , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/terapia , Terapia por Estimulação Elétrica/métodos , Eletroencefalografia , Epilepsias Parciais/fisiopatologia , Epilepsias Parciais/terapia , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/terapia , Adolescente , Adulto , Dominância Cerebral/fisiologia , Eletrodos Implantados , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Assistência de Longa Duração , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
Epilepsia ; 58(6): 1005-1014, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28387951

RESUMO

OBJECTIVE: Evaluate the seizure-reduction response and safety of brain-responsive stimulation in adults with medically intractable partial-onset seizures of neocortical origin. METHODS: Patients with partial seizures of neocortical origin were identified from prospective clinical trials of a brain-responsive neurostimulator (RNS System, NeuroPace). The seizure reduction over years 2-6 postimplantation was calculated by assessing the seizure frequency compared to a preimplantation baseline. Safety was assessed based on reported adverse events. Additional analyses considered safety and seizure reduction according to lobe and functional area (e.g., eloquent cortex) of seizure onset. RESULTS: There were 126 patients with seizures of neocortical onset. The average follow-up was 6.1 implant years. The median percent seizure reduction was 70% in patients with frontal and parietal seizure onsets, 58% in those with temporal neocortical onsets, and 51% in those with multilobar onsets (last observation carried forward [LOCF] analysis). Twenty-six percent of patients experienced at least one seizure-free period of 6 months or longer and 14% experienced at least one seizure-free period of 1 year or longer. Patients with lesions on magnetic resonance imaging (MRI; 77% reduction, LOCF) and those with normal MRI findings (45% reduction, LOCF) benefitted, although the treatment response was more robust in patients with an MRI lesion (p = 0.02, generalized estimating equation [GEE]). There were no differences in the seizure reduction in patients with and without prior epilepsy surgery or vagus nerve stimulation. Stimulation parameters used for treatment did not cause acute or chronic neurologic deficits, even in eloquent cortical areas. The rates of infection (0.017 per patient implant year) and perioperative hemorrhage (0.8%) were not greater than with other neurostimulation devices. SIGNIFICANCE: Brain-responsive stimulation represents a safe and effective treatment option for patients with medically intractable epilepsy, including adults with seizures of neocortical onset, and those with onsets from eloquent cortex.


Assuntos
Córtex Cerebral/fisiopatologia , Estimulação Encefálica Profunda/métodos , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/terapia , Terapia por Estimulação Elétrica/métodos , Eletroencefalografia , Neocórtex/fisiopatologia , Adolescente , Adulto , Mapeamento Encefálico , Estimulação Encefálica Profunda/instrumentação , Terapia por Estimulação Elétrica/instrumentação , Eletrodos Implantados , Epilepsias Parciais/fisiopatologia , Epilepsias Parciais/terapia , Epilepsia Parcial Complexa/fisiopatologia , Epilepsia Parcial Complexa/terapia , Epilepsia Motora Parcial/fisiopatologia , Epilepsia Motora Parcial/terapia , Epilepsia Tônico-Clônica/fisiopatologia , Epilepsia Tônico-Clônica/terapia , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
J Neural Eng ; 14(4): 044001, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28332484

RESUMO

OBJECTIVE: Epileptiform discharges, an electrophysiological hallmark of seizures, can propagate across cortical tissue in a manner similar to traveling waves. Recent work has focused attention on the origination and propagation patterns of these discharges, yielding important clues to their source location and mechanism of travel. However, systematic studies of methods for measuring propagation are lacking. APPROACH: We analyzed epileptiform discharges in microelectrode array recordings of human seizures. The array records multiunit activity and local field potentials at 400 micron spatial resolution, from a small cortical site free of obstructions. We evaluated several computationally efficient statistical methods for calculating traveling wave velocity, benchmarking them to analyses of associated neuronal burst firing. MAIN RESULTS: Over 90% of discharges met statistical criteria for propagation across the sampled cortical territory. Detection rate, direction and speed estimates derived from a multiunit estimator were compared to four field potential-based estimators: negative peak, maximum descent, high gamma power, and cross-correlation. Interestingly, the methods that were computationally simplest and most efficient (negative peak and maximal descent) offer non-inferior results in predicting neuronal traveling wave velocities compared to the other two, more complex methods. Moreover, the negative peak and maximal descent methods proved to be more robust against reduced spatial sampling challenges. Using least absolute deviation in place of least squares error minimized the impact of outliers, and reduced the discrepancies between local field potential-based and multiunit estimators. SIGNIFICANCE: Our findings suggest that ictal epileptiform discharges typically take the form of exceptionally strong, rapidly traveling waves, with propagation detectable across millimeter distances. The sequential activation of neurons in space can be inferred from clinically-observable EEG data, with a variety of straightforward computation methods available. This opens possibilities for systematic assessments of ictal discharge propagation in clinical and research settings.


Assuntos
Eletrodos Implantados , Eletroencefalografia/instrumentação , Eletroencefalografia/métodos , Convulsões/diagnóstico , Convulsões/fisiopatologia , Potenciais de Ação/fisiologia , Humanos , Microeletrodos , Análise Multivariada , Análise de Regressão
13.
Clin Neurophysiol ; 128(1): 123-127, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27888745

RESUMO

OBJECTIVE: To explore the feasibility of eliciting the brainstem H reflex in the masseter muscle in patients under general anesthesia. METHODS: We electrically stimulated the masseteric nerve, a branch of the trigeminal nerve, and recorded ipsilateral masseteric and temporalis muscle responses. We tested eight patients who presented with trigeminal neuralgia; one patient had a temporal bone tumor and one patient had a brainstem arteriovenous malformation. All responses were elicited when patients were under general anesthesia and before the initiation of surgery. RESULTS: The H reflex in the masseter muscle was reliably elicited in 70% of the patients. The reflexes met the usual criteria for the H reflex because they were elicited below the threshold of the direct M response, and their amplitudes decreased when the M response increased with stronger stimuli. The mean onset latencies of the masseter H reflex and the M response were 5.4±1.3ms and 2.6±0.6ms, respectively. CONCLUSIONS: In the present study, we provide evidence of the feasibility of eliciting the H reflex in the masseter muscles of patients under general anesthesia. SIGNIFICANCE: The H reflex of the masseter muscle may represent a new method available for intraoperative monitoring. Specifically, this method may be important for the monitoring of brainstem functional integrity, particularly in the midbrain and mid-pons, in addition to the trigeminal nerve path.


Assuntos
Anestesia Geral/métodos , Reflexo H/fisiologia , Monitorização Neurofisiológica Intraoperatória/métodos , Músculo Masseter/fisiologia , Adulto , Idoso , Anestésicos Gerais/administração & dosagem , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/fisiologia , Criança , Estudos de Viabilidade , Feminino , Reflexo H/efeitos dos fármacos , Humanos , Masculino , Músculo Masseter/efeitos dos fármacos , Pessoa de Meia-Idade
14.
eNeuro ; 3(2)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27257623

RESUMO

High-gamma (HG; 80-150 Hz) activity in macroscopic clinical records is considered a marker for critical brain regions involved in seizure initiation; it is correlated with pathological multiunit firing during neocortical seizures in the seizure core, an area identified by correlated multiunit spiking and low frequency seizure activity. However, the effects of the spatiotemporal dynamics of seizure on HG power generation are not well understood. Here, we studied HG generation and propagation, using a three-step, multiscale signal analysis and modeling approach. First, we analyzed concurrent neuronal and microscopic network HG activity in neocortical slices from seven intractable epilepsy patients. We found HG activity in these networks, especially when neurons displayed paroxysmal depolarization shifts and network activity was highly synchronized. Second, we examined HG activity acquired with microelectrode arrays recorded during human seizures (n = 8). We confirmed the presence of synchronized HG power across microelectrode records and the macroscale, both specifically associated with the core region of the seizure. Third, we used volume conduction-based modeling to relate HG activity and network synchrony at different network scales. We showed that local HG oscillations require high levels of synchrony to cross scales, and that this requirement is met at the microscopic scale, but not within macroscopic networks. Instead, we present evidence that HG power at the macroscale may result from harmonics of ongoing seizure activity. Ictal HG power marks the seizure core, but the generating mechanism can differ across spatial scales.


Assuntos
Epilepsia Resistente a Medicamentos/patologia , Potenciais Evocados/fisiologia , Ritmo Gama/fisiologia , Neocórtex/fisiopatologia , Adolescente , Criança , Pré-Escolar , Epilepsia Resistente a Medicamentos/cirurgia , Estimulação Elétrica , Eletroencefalografia , Feminino , Humanos , Técnicas In Vitro , Masculino , Microeletrodos , Técnicas de Patch-Clamp
15.
Nat Commun ; 7: 11098, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27020798

RESUMO

The extensive distribution and simultaneous termination of seizures across cortical areas has led to the hypothesis that seizures are caused by large-scale coordinated networks spanning these areas. This view, however, is difficult to reconcile with most proposed mechanisms of seizure spread and termination, which operate on a cellular scale. We hypothesize that seizures evolve into self-organized structures wherein a small seizing territory projects high-intensity electrical signals over a broad cortical area. Here we investigate human seizures on both small and large electrophysiological scales. We show that the migrating edge of the seizing territory is the source of travelling waves of synaptic activity into adjacent cortical areas. As the seizure progresses, slow dynamics in induced activity from these waves indicate a weakening and eventual failure of their source. These observations support a parsimonious theory for how large-scale evolution and termination of seizures are driven from a small, migrating cortical area.


Assuntos
Ondas Encefálicas/fisiologia , Convulsões/fisiopatologia , Simulação por Computador , Eletroencefalografia , Ritmo Gama , Humanos , Microeletrodos , Modelos Neurológicos , Rede Nervosa/fisiopatologia
16.
Pract Radiat Oncol ; 6(1): e1-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26577003

RESUMO

PURPOSE: The purpose of this study was to assess the safety and outcomes of the clinical use of LINAC (linear accelerator)-based flattening-filter-free beams for delivering ablative stereotactic radiosurgery (SRS) for trigeminal neuralgia (TN). METHODS AND MATERIALS: Thirty-six consecutive patients (34 unique patients) followed up by a single neurosurgeon and diagnosed with medically refractory unilateral TN were treated with SRS. There were 14 left-sided cases (41%) and 20 right-sided cases (59%). Twenty-eight of the patients (82%) had type 1 TN, and 6 (18%) had type 2 TN. Previous treatments were as follows: 10 patients (29%) had SRS to the ipsilateral TN (8 with Gamma Knife, 2 with LINAC), 4 (12%) had percutaneous rhizotomy, and 3 (9%) had microvascular decompression. A median prescription dose of 75 Gy (range, 70-80 Gy), prescribed to the 100% isodose line, was delivered in a single fraction. Before treatment delivery, image guidance verified stereotactic frame placement, head position, and final isocenter. The volume of brainstem receiving ≥10 Gy was <0.5 cm(3). At each visit, patients prospectively reported outcomes using the Barrow Neurological Institute (BNI) pain scale. RESULTS: With a median follow-up of 3.1 months (range, 0.6-24.3; mean, 5.5 months), no patient experienced grade 1+ toxicities. There were no new episodes of dysesthesia, hypoesthesia, or long-term complications related to SRS. Median baseline (pre-SRS) BNI score was 5.0 (mean, 4.7). Clinical assessment at first follow-up (median, 1 month) demonstrated a median BNI score of 3.0 (mean, 3.1). When stratified by TN subtype, both type 1 and type 2 TN patients had a median BNI score of 3.0 at first follow-up. Thirty patients (88.2%) achieved a reduction in their BNI at their first follow-up, and 5 patients (15%) achieved a score <3, which represents medication-free pain relief. The median BNI at second follow-up (average, 6.3 months) was 2.5. CONCLUSIONS: We report our experience with modern LINAC-based SRS using flattening-filter-free beams for TN. This treatment appears to be a safe and effective technique, although longer follow-up is needed to confirm durability. This modality may prove to be a viable treatment alternative for TN.


Assuntos
Aceleradores de Partículas , Avaliação de Resultados da Assistência ao Paciente , Radiocirurgia , Neuralgia do Trigêmeo/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Medição da Dor , Estudos Prospectivos , Resultado do Tratamento , Neuralgia do Trigêmeo/patologia
17.
Hum Brain Mapp ; 36(10): 3988-4003, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26147431

RESUMO

Despite an extensive body of work, it is still not clear how short term maintenance of information is implemented in the human brain. Most prior research has focused on "working memory"-typically involving the storage of a number of items, requiring the use of a phonological loop and focused attention during the delay period between encoding and retrieval. These studies largely support a model of enhanced activity in the delay interval as the central mechanism underlying working memory. However, multi-item working memory constitutes only a subset of storage phenomena that may occur during daily life. A common task in naturalistic situations is short term memory of a single item-for example, blindly reaching to a previously placed cup of coffee. Little is known about such single-item, effortless, storage in the human brain. Here, we examined the dynamics of brain responses during a single-item maintenance task, using intracranial recordings implanted for clinical purpose in patients (ECoG). Our results reveal that active electrodes were dominated by transient short latency visual and motor responses, reflected in broadband high frequency power increases in occipito-temporal, frontal, and parietal cortex. Only a very small set of electrodes showed activity during the early part of the delay period. Interestingly, no cortical site displayed a significant activation lasting to the response time. These results suggest that single item encoding is characterized by transient high frequency ECoG responses, while the maintenance of information during the delay period may be mediated by mechanisms necessitating only low-levels of neuronal activations.


Assuntos
Córtex Cerebral/fisiologia , Processos Mentais/fisiologia , Adulto , Mapeamento Encefálico , Epilepsia Resistente a Medicamentos/cirurgia , Eletrodos Implantados , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória de Curto Prazo/fisiologia , Rememoração Mental/fisiologia , Destreza Motora/fisiologia , Procedimentos Neurocirúrgicos , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Tomografia Computadorizada por Raios X , Percepção Visual/fisiologia , Adulto Jovem
18.
Brain ; 138(Pt 10): 2891-906, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26187332

RESUMO

Spike-sorting algorithms have been used to identify the firing patterns of isolated neurons ('single units') from implanted electrode recordings in patients undergoing assessment for epilepsy surgery, but we do not know their potential for providing helpful clinical information. It is important therefore to characterize both the stability of these recordings and also their context. A critical consideration is where the units are located with respect to the focus of the pathology. Recent analyses of neuronal spiking activity, recorded over extended spatial areas using microelectrode arrays, have demonstrated the importance of considering seizure activity in terms of two distinct spatial territories: the ictal core and penumbral territories. The pathological information in these two areas, however, is likely to be very different. We investigated, therefore, whether units could be followed reliably over prolonged periods of times in these two areas, including during seizure epochs. We isolated unit recordings from several hundred neurons from four patients undergoing video-telemetry monitoring for surgical evaluation of focal neocortical epilepsies. Unit stability could last in excess of 40 h, and across multiple seizures. A key finding was that in the penumbra, spike stereotypy was maintained even during the seizure. There was a net tendency towards increased penumbral firing during the seizure, although only a minority of units (10-20%) showed significant changes over the baseline period, and notably, these also included neurons showing significant reductions in firing. In contrast, within the ictal core territories, regions characterized by intense hypersynchronous multi-unit firing, our spike sorting algorithms failed as the units were incorporated into the seizure activity. No spike sorting was possible from that moment until the end of the seizure, but recovery of the spike shape was rapid following seizure termination: some units reappeared within tens of seconds of the end of the seizure, and over 80% reappeared within 3 min (τrecov = 104 ± 22 s). The recovery of the mean firing rate was close to pre-ictal levels also within this time frame, suggesting that the more protracted post-ictal state cannot be explained by persistent cellular neurophysiological dysfunction in either the penumbral or the core territories. These studies lay the foundation for future investigations of how these recordings may inform clinical practice.See Kimchi and Cash (doi:10.1093/awv264) for a scientific commentary on this article.


Assuntos
Potenciais de Ação/fisiologia , Ondas Encefálicas/fisiologia , Neocórtex/patologia , Neurônios/patologia , Convulsões/patologia , Convulsões/fisiopatologia , Adulto , Algoritmos , Animais , Animais Recém-Nascidos , Eletrodos , Eletroencefalografia , Humanos , Técnicas In Vitro , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp
19.
Neurology ; 84(23): 2320-8, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-25972493

RESUMO

OBJECTIVE: To determine whether resection of areas with evidence of intense, synchronized neural firing during seizures is an accurate indicator of postoperative outcome. METHODS: Channels meeting phase-locked high gamma (PLHG) criteria were identified retrospectively from intracranial EEG recordings (102 seizures, 46 implantations, 45 patients). Extent of removal of both the seizure onset zone (SOZ) and PLHG was correlated with seizure outcome, classified as good (Engel class I or II, n = 32) or poor (Engel class III or IV, n = 13). RESULTS: Patients with good outcomes had significantly greater proportions of both SOZ and the first 4 (early) PLHG sites resected. Improved outcome classification was noted with early PLHG, as measured by the area under the receiver operating characteristic curves (PLHG 0.79, SOZ 0.68) and by odds ratios for resections including at least 75% of sites identified by each measure (PLHG 9.7 [95% CI: 2.3-41.5], SOZ 5.3 [95% CI: 1.2-23.3]). Among patients with resection of at least 75% of the SOZ, 78% (n = 30) had good outcomes, increasing to 91% when the resection also included at least 75% of early PLHG sites (n = 22). CONCLUSIONS: This study demonstrates the localizing value of early PLHG, which is comparable to that provided by the SOZ. Incorporation of PLHG into the clinical evaluation may improve surgical efficacy and help to focus resections on the most critical areas.


Assuntos
Eletroencefalografia/métodos , Ritmo Gama/fisiologia , Avaliação de Resultados em Cuidados de Saúde , Convulsões , Eletrodos Implantados , Humanos , Estudos Retrospectivos , Convulsões/diagnóstico , Convulsões/patologia , Convulsões/fisiopatologia , Convulsões/cirurgia
20.
J Math Neurosci ; 5: 7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852982

RESUMO

UNLABELLED: Measurements of neuronal signals during human seizure activity and evoked epileptic activity in experimental models suggest that, in these pathological states, the individual nerve cells experience an activity driven depolarization block, i.e. they saturate. We examined the effect of such a saturation in the Wilson-Cowan formalism by adapting the nonlinear activation function; we substituted the commonly applied sigmoid for a Gaussian function. We discuss experimental recordings during a seizure that support this substitution. Next we perform a bifurcation analysis on the Wilson-Cowan model with a Gaussian activation function. The main effect is an additional stable equilibrium with high excitatory and low inhibitory activity. Analysis of coupled local networks then shows that such high activity can stay localized or spread. Specifically, in a spatial continuum we show a wavefront with inhibition leading followed by excitatory activity. We relate our model simulations to observations of spreading activity during seizures. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13408-015-0019-4) contains supplementary material 1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...