Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 5(9): 4206-4218, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-33417778

RESUMO

Nanomaterials have been extensively used in the biomedical field and have recently garnered attention as potential antimicrobial agents. Cadmium telluride quantum dots (QDs) with a bandgap of 2.4 eV (CdTe-2.4) were previously shown to inhibit multidrug-resistant clinical isolates of bacterial pathogens via light-activated superoxide generation. Here we investigate the transcriptomic response of Escherichia coli to phototherapeutic CdTe-2.4 QDs both with and without illumination, as well as in comparison with the non-superoxide-generating cadmium selenide QDs (CdSe-2.4) as a negative control. Our analysis sought to separate the transcriptomic response of E. coli to the generation of superoxide by the CdTe-2.4 QDs from the presence of cadmium chalcogenide nanoparticles alone. We used comparisons between illuminated CdTe-2.4 conditions and all others to establish the superoxide generation response and used comparisons between all QD conditions and the no treatment condition to establish the cadmium chalcogenide QD response. In our analysis of the gene expression experiments, we found eight genes to be consistently differentially expressed as a response to superoxide generation, and these genes demonstrate a consistent association with the DNA damage response and deactivation of iron-sulfur clusters. Each of these responses is characteristic of a bacterial superoxide response. We found 18 genes associated with the presence of cadmium chalcogenide QDs but not the generation of superoxide by CdTe-2.4, including several that implicated metabolism of amino acids in the E. coli response. To explore each of these gene sets further, we performed both gene knockout and amino acid supplementation experiments. We identified the importance of leucyl-tRNA downregulation as a cadmium chalcogenide QD response and reinforced the relationship between CdTe-2.4 stress and iron-sulfur clusters through examination of the gene tusA. This study demonstrates the transcriptomic response of E. coli to CdTe-2.4 and CdSe-2.4 QDs and parses the different effects of superoxide versus material effects on the bacteria. Our findings may provide useful information toward the development of QD-based antibacterial therapy in the future.

2.
Front Chem ; 6: 46, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29594097

RESUMO

The rapid emergence of superbugs, or multi-drug resistant (MDR) organisms, has prompted a search for novel antibiotics, beyond traditional small-molecule therapies. Nanotherapeutics are being investigated as alternatives, and recently superoxide-generating quantum dots (QDs) have been shown as important candidates for selective light-activated therapy, while also potentiating existing antibiotics against MDR superbugs. Their therapeutic action is selective, can be tailored by simply changing their quantum-confined conduction-valence band (CB-VB) positions and alignment with different redox half-reactions-and hence their ability to generate specific radical species in biological media. Here, we show the design of superoxide-generating QDs using optimal QD material and size well-matched to superoxide redox potential, charged ligands to modulate their uptake in cells and selective redox interventions, and core/shell structures to improve their stability for therapeutic action. We show that cadmium telluride (CdTe) QDs with conduction band (CB) position at -0.5 V with respect to Normal Hydrogen Electron (NHE) and visible 2.4 eV bandgap generate a large flux of selective superoxide radicals, thereby demonstrating the effective light-activated therapy. Although the positively charged QDs demonstrate large cellular uptake, they bind indiscriminately to cell surfaces and cause non-selective cell death, while negatively charged and zwitterionic QD ligands reduce the uptake and allow selective therapeutic action via interaction with redox species. The stability of designed QDs in biologically-relevant media increases with the formation of core-shell QD structures, but an appropriate design of core-shell structures is needed to minimize any reduction in charge injection efficiency to adsorbed oxygen molecules (to form superoxide) and maintain similar quantitative generation of tailored redox species, as measured using electron paramagnetic resonance (EPR) spectroscopy and electrochemical impedance spectroscopy (EIS). Using these findings, we demonstrate the rational design of QDs as selective therapeutic to kill more than 99% of a priority class I pathogen, thus providing an effective therapy against MDR superbugs.

3.
ACS Appl Bio Mater ; 1(2): 529-537, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35016375

RESUMO

Reactive oxygen species (ROS) represent a broad range of chemical species including superoxide, hydroxyl, singlet oxygen, and hydrogen peroxide. Each species behaves differently in the cellular environment. Some can play specific roles as intracellular signaling molecules, while others act primarily as indiscriminate oxidants. Several recent reports have promoted the use of exogenous ROS as therapeutic agents with applications from cancer therapies to novel antimicrobials. However, therapeutics, specifically antibiotics, should either kill or inhibit the growth of harmful cells (bacteria here) without harming the host cells, and hence selectivity of action is of vital importance. Here, we show that among different ROS, only superoxide was found to be bactericidal, killing a range of multidrug-resistant (MDR) pathogens without affecting the viability or growth of mammalian cells. Superoxide has a high thermodynamic capacity to be a strong oxidant. However, its lack of reactivity with cellular components at a physiological pH, except for the inactivation of biosynthetic enzymes containing labile iron-sulfur clusters, is key to its selectivity. The role of iron in bacterial pathogenesis also makes superoxide a strong candidate for antimicrobial therapy. Additionally, using a series of selective scavengers, we show that the superoxide radical is therapeutically effective and selective compared to other ROS like hydroxyl radicals, confirming previous results that used Escherichia coli gene knockouts to show that superoxide selectively deactivates some enzymes rather than causing indiscriminate damage of cellular components. In our in vitro studies, intracellular superoxide generation using light-activated quantum dots yielded highly selective and effective antimicrobial action. We screened 45 clinical MDR bacterial isolates and observed inhibition/therapeutic action in all strains, highlighting the applicability of such nanoparticle superoxide therapy. These results can pave the way for rational design of nanoscale therapies as precision medicine.

4.
Sci Adv ; 3(10): e1701776, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28983513

RESUMO

The rise of multidrug-resistant (MDR) bacteria is a growing concern to global health and is exacerbated by the lack of new antibiotics. To treat already pervasive MDR infections, new classes of antibiotics or antibiotic adjuvants are needed. Reactive oxygen species (ROS) have been shown to play a role during antibacterial action; however, it is not yet understood whether ROS contribute directly to or are an outcome of bacterial lethality caused by antibiotics. We show that a light-activated nanoparticle, designed to produce tunable flux of specific ROS, superoxide, potentiates the activity of antibiotics in clinical MDR isolates of Escherichia coli, Salmonella enterica, and Klebsiella pneumoniae. Despite the high degree of antibiotic resistance in these isolates, we observed a synergistic interaction between both bactericidal and bacteriostatic antibiotics with varied mechanisms of action and our superoxide-producing nanoparticles in more than 75% of combinations. As a result of this potentiation, the effective antibiotic concentration of the clinical isolates was reduced up to 1000-fold below their respective sensitive/resistant breakpoint. Further, superoxide-generating nanoparticles in combination with ciprofloxacin reduced bacterial load in epithelial cells infected with S. enterica serovar Typhimurium and increased Caenorhabditis elegans survival upon infection with S. enterica serovar Enteriditis, compared to antibiotic alone. This demonstration highlights the ability to engineer superoxide generation to potentiate antibiotic activity and combat highly drug-resistant bacterial pathogens.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Superóxidos/metabolismo , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Caenorhabditis elegans , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Nanopartículas , Oxirredução
5.
Nat Mater ; 15(5): 529-34, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26779882

RESUMO

Multidrug-resistant bacterial infections are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics. Metal nanoparticles can induce cell death, yet the toxicity effect is typically nonspecific. Here, we show that photoexcited quantum dots (QDs) can kill a wide range of multidrug-resistant bacterial clinical isolates, including methicillin-resistant Staphylococcus aureus, carbapenem-resistant Escherichia coli, and extended-spectrum ß-lactamase-producing Klebsiella pneumoniae and Salmonella typhimurium. The killing effect is independent of material and controlled by the redox potentials of the photogenerated charge carriers, which selectively alter the cellular redox state. We also show that the QDs can be tailored to kill 92% of bacterial cells in a monoculture, and in a co-culture of E. coli and HEK 293T cells, while leaving the mammalian cells intact, or to increase bacterial proliferation. Photoexcited QDs could be used in the study of the effect of redox states on living systems, and lead to clinical phototherapy for the treatment of infections.


Assuntos
Antibacterianos , Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Pontos Quânticos/química , Antibacterianos/química , Antibacterianos/farmacologia , Oxirredução/efeitos dos fármacos
6.
Nanoscale ; 7(44): 18435-40, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26498166

RESUMO

The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient transport of energy across QD-DNA thin films.


Assuntos
DNA/química , Condutividade Elétrica , Medições Luminescentes/métodos , Membranas Artificiais , Pontos Quânticos/química , Titânio/química
7.
Nanoscale ; 6(21): 12450-7, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25260183

RESUMO

Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics.

8.
J Phys Chem Lett ; 5(24): 4291-7, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26273976

RESUMO

The development of two-dimensional (2D) nanomaterials has revealed novel physical properties, like high carrier mobilities and the tunable coupling of charge carriers with phonons, which can enable wide-ranging applications in optoelectronic and thermoelectric devices. While mechanical exfoliation of graphene and some transition metal dichalcogenides (e.g., MoS2, WSe2) has enabled their fabrication as 2D semiconductors and integration into devices, lack of similar syntheses for other 2D semiconductor materials has hindered further progress. Here, we report measurements of fundamental charge carrier interactions and optoelectronic properties of 2D nanomaterials made from two-monolayers-thick PbX, CdX, Cu2X, and Ag2X (X = S, Se) using colloidal syntheses. Extremely low coupling of charge carriers with phonons (2-6-fold lower than bulk and other low-dimensional semiconductors), high carrier mobilities (0.2-1.2 cm(2) V(-1) s(-1), without dielectric screening), observation of infrared surface plasmons in ultrathin 2D semiconductor nanostructures, strong quantum-confinement, and other multiexcitonic properties (different phonon coupling and photon-to-charge collection efficiencies for band-edge and higher-energy excitons) can pave the way for efficient solution-processed devices made from these 2D nanostructured semiconductors.

9.
J Phys Chem Lett ; 5(21): 3909-13, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26278768

RESUMO

Quantum dots (QDs) are semiconductor nanocrystallites with multiple size-dependent quantum-confined states that are being explored for utilizing broadband radiation. While DNA has been used for the self-assembly of nanocrystals, it has not been investigated for the formation of simultaneous conduction pathways for transporting multiple energy charges or excitons. These exciton shelves can be formed by coupling the conduction band, valence band, and hot-carrier states in QDs with different HOMO-LUMO levels of DNA nucleobases, resulting from varying degrees of conjugation in the nucleobases. Here we present studies on the electronic density of states in four naturally occurring nucleobases (guanine, thymine, cytosine, and adenine), which energetically couple to quantized states in semiconductor QDs. Using scanning tunneling spectroscopy of single nanoparticle-DNA constructs, we demonstrate composite DOS of chemically coupled DNA oligonucleotides and cadmium chalcogenide QDs (CdS, CdSe, CdTe). While perfectly aligned CdTe QD-DNA states lead to exciton shelves for multiple energy charge transport, mismatched energy levels in CdSe QD-DNA introduce intrabandgap states that can lead to charge trapping and recombination. Although further investigations are required to study the rates of charge transfer, recombination, and back-electron transfer, these results can have important implications for the development of a new class of nanobioelectronics and biological transducers.

10.
J Am Chem Soc ; 133(9): 2856-9, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21319824

RESUMO

Four-electron oxidation of the quadruply bonded W(2)(II,II) compound W(2)(2,2'-dipyridylamide)(4), 1, results in the formation of a novel, diamagnetic ditungsten terminal oxo compound [W(2)O(2,2'-dipyridylamide)(4)](2+), 2. In contrast to the chemical inertness of mononuclear tungsten oxo species, 2 undergoes a four-electron reduction including oxygen-atom transfer in reactions with excess tri-tert-butylphosphine in acetonitrile to recover 1. This unusual chemically reversible multielectron reactivity is ascribed to the cooperation of W-O and W-W multiple bonding.


Assuntos
2,2'-Dipiridil/análogos & derivados , Compostos de Tungstênio/química , Amidas/química , Cristalografia por Raios X , Modelos Moleculares , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA