Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Forensic Sci ; 69(3): 847-855, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38362839

RESUMO

The detection of explosives and explosive devices based on the volatile compounds they emit is a long-standing tool for law enforcement and physical security. Toward that end, solid-phase microextraction (SPME) combined with gas chromatography-mass spectrometry (GC-MS) has become a crucial analytical tool for the identification of volatiles emitted by explosives. Previous SPME studies have identified many volatile compounds emitted by common explosive formulations that serve as the main charge in explosive devices. However, limited research has been conducted on initiators like fuses, detonating cords, and boosters. In this study, a variety of SPME fiber coatings (i.e., polydimethylsiloxane (PDMS), polydimethylsiloxane/divinylbenzene (PDMS/DVB), divinylbenzene/carboxin/polydimethylsiloxane (DVB/CAR/PDMS), and carboxin/polydimethylsiloxane (CAR/PDMS)) were employed for the extraction and analysis of volatiles from Composition C-4 (cyclohexanone, 2-ethyl-1-hexanol, and 2,3-dimethyl-2,3-dinitrobutane (DMNB)) and Red Dot double-base smokeless powder (nitroglycerine, phenylamine). The results revealed that a PDMS/DVB fiber was optimal. Then, an assortment of explosive items (i.e., detonation cord, safety fuse, slip-on booster, and shape charge) were analyzed with a PDMS/DVB fiber. A variety of volatile compounds were identified, including plasticizers (tributyl acetyl citrate, N-butylbenzenesulfonamide), taggants (DMNB), and degradation products (2-ethyl-1-hexanol).

2.
ACS Appl Mater Interfaces ; 15(40): 46681-46696, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37769194

RESUMO

Microneedles are widely used substrates for various chemical and biological sensing applications utilizing surface-enhanced Raman spectroscopy (SERS), which is indeed a highly sensitive and specific analytical approach. This article reports the fabrication of a nanoparticle (NP)-decorated microneedle substrate that is both a SERS substrate and a substrate-supported electrospray ionization (ssESI) mass spectrometry (MS) sample ionization platform. Polymeric ligand-functionalized gold nanorods (Au NRs) are adsorbed onto superhydrophobic surface-modified polydimethylsiloxane (PDMS) microneedles through the control of various interfacial interactions. We show that the chain length of the polymer ligands dictates the NR adsorption process. Importantly, assembling Au NRs onto the micrometer-diameter needle tips allows the formation of highly concentrated electromagnetic hot spots, which provide the SERS enhancement factor as high as 1.0 × 106. The micrometer-sized area of the microneedle top and high electromagnetic field enhancement of our system can be loosely compared with tip-enhanced Raman spectroscopy, where the apex of a plasmonic NP-functionalized sharp probe produces high-intensity plasmonic hot spots. Utilizing our NR-decorated microneedle substrates, the synthetic drugs fentanyl and alprazolam are analyzed with a subpicomolar limit of detection. Further analysis of drug-molecule interactions on the NR surface utilizing the Langmuir adsorption model suggests that the higher polarizability of fentanyl allows for a stronger interaction with hydrophilic polymer layers on the NR surface. We further demonstrate the translational aspect of the microneedle substrate for both SERS- and ssESI-MS-based detection of these two potent drugs in 10 drug-of-abuse (DOA) patient plasma samples with minimal preanalysis sample preparation steps. Chemometric analysis for the SERS-based detection shows a very good classification between fentanyl, alprazolam, or a mixture thereof in our selected 10 samples. Most importantly, ssESI-MS analysis also successfully identifies fentanyl or alprazolam in these same 10 DOA plasma samples. We believe that our multimodal detection approach presented herein is a highly versatile detection technology that can be applicable to the detection of any analyte type without performing any complicated sample preparation.

3.
J Forensic Sci ; 68(3): 815-827, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36912418

RESUMO

The storage and use of explosives is regulated at the state and federal level, with a particular focus on physical security and rigorous accounting of the explosive inventory. For those working with explosives for the training and testing of explosive-detecting canines, cross-contamination is an important concern. Hence, explosives intended for use with canine teams must be placed into secondary storage containers that are new, clean, and airtight. A variety of containers meet these requirements and include screw-top glass jars (e.g., mason jars). However, an additional need from the explosive-detecting canine community is secondary containers that can also be used as training aids whereby the volatiles emitted by explosives are emitted in a predictable and stable manner. Currently, a generally accepted method for the storage of explosives and controlled emission of explosive vapor for canine detection does not exist. Ideally, such containers should allow odor to escape from the training aid but block external contaminates such as particulates or other volatiles. One method in use places the explosive inside a permeable cotton bag when in use for training and then stores the cotton bag inside an impermeable nylon bag for long-term storage. This paper describes the testing of an odor permeable membrane device (OPMD) as a new way to store and deploy training aids. We measured the evaporation rate and flux of various liquid explosives and volatile compounds that have been identified in the headspace of actual explosives. OPMDs were used in addition to traditional storage containers to monitor the contamination and degradation of 14 explosives used as canine training aids. Explosives were stored individually using traditional storage bags or inside an OPMD at two locations, one of which actively used the training aids. Samples from each storage type at both locations were collected at 0, 3, 6, and 9 months and analyzed using Fourier Transform Infrared (FTIR) Spectroscopy and Gas Chromatography-Mass Spectrometry (GC-MS) with Solid-Phase Microextraction (SPME). FTIR analyses showed no signs of degradation. GC-MS identified cross-contamination from ethylene glycol dinitrate (EGDN) and/or 2,3-dimethyl-2,3-dinitrobutane (DMNB) across almost all samples regardless of storage condition. The contamination was found to be higher among training aids that were stored in traditional ways and that were in active use by canine teams.


Assuntos
Substâncias Explosivas , Odorantes , Animais , Cães , Parafusos Ósseos , Contaminação de Medicamentos , Cromatografia Gasosa-Espectrometria de Massas
4.
Sci Justice ; 62(4): 455-460, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35931451

RESUMO

We have recently demonstrated that coated exfoliated Egyptian blue powder is effective for detecting latent fingermarks on a range of highly-patterned non-porous and semi-porous surfaces. In this extension of that work, we present our studies into an alternative approach to prepare exfoliated Egyptian blue coated with cetrimonium bromide and Tween® 20 using a simpler technique. The quality of the latent fingermarks developed with these exfoliated powders and the commercial powder were compared in acomprehensive study. Depletion series of natural fingermarks from a wide range of donors (12 males and females) deposited on non-porous (glass slides) and semi-porous (Australian banknotes) surfaces were used in this study. Enhancement in the performance of the coated exfoliated particles compared to the commercial powder was observed, particularly in the case of aged fingermarks and polymer banknotes as challenging substrates.


Assuntos
Dermatoglifia , Metanol , Idoso , Austrália , Cobre , Feminino , Humanos , Masculino , Pós , Silicatos
5.
J Forensic Sci ; 67(4): 1431-1440, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35368092

RESUMO

Forensic analysis of smokeless powder particles recovered from the debris of an improvised explosive device can provide information about the type of smokeless powder used and can aid investigation efforts. In this study, quantitative methods were used to yield information about the difference in the chemical composition of the particles pre- and post-blast. The technique, gas chromatography/vacuum ultraviolet spectroscopy (GC/VUV), was able to quantify nitroglycerin, 2,4-dinitrotoluene, diphenylamine, ethyl centralite, and di-n-butyl phthalate in pre- and post-blast smokeless powder particles using heptadecane as an internal standard. Post-blast debris was obtained via controlled explosions with assistance from the Indiana State Police Bomb Squad. Two galvanized steel and two polyvinyl chloride pipe bombs were assembled. Two devices contained single-base smokeless powder and two contained double-base smokeless powder. 2,4-dinitrotoluene and diphenylamine were successfully quantified in the single-base smokeless powder post-blast debris while nitroglycerin, diphenylamine, and ethyl centralite were successfully quantified in the double-base smokeless powder post-blast debris. Compounds were detected at concentrations as low as 9 µg of 2,4-dinitrotoluene per mg, <3 µg of diphenylamine per mg, 131 µg of nitroglycerin per mg, and <3 µg of ethyl centralite per mg. Concentration changes between pre- and post-blast smokeless powder particles were determined as well as microscopic differences between pre- and post-blast debris for both smokeless powders in all devices. To our knowledge, this is the first use of GC/VUV for the quantification of explosives.

6.
Anal Chim Acta ; 1185: 339042, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34711315

RESUMO

The nitro functional group (NO2) features strongly in compounds such as explosives, pharmaceuticals, and fragrances. However, its gas phase absorbance characteristics in the vacuum UV region (120-200 nm) have not been systematically studied. Gas chromatography/vacuum UV spectroscopy (GC/VUV) was utilized to study the gas phase VUV spectra of various nitrated compounds (e.g., nitrate esters (-R-O-NO2), nitramines (R-N-NO2), nitroaromatics (Ar-NO2), and nitroalkanes (R-NO2)). The nitro absorption maximum appeared over a wide range (170-270 nm) and its wavelength and intensity were highly dependent upon the structure of the rest of the molecule. For example, the nitroalkanes exhibited a trend in that the ratio of the relative absorption intensity between these two absorption features between the alkyl group (<150 nm) and the nitro group (200 nm) increases as the molecular weight increases. It was observed that the addition of multiple nitro functional groups on benzene or toluene resulted in an increase in intensity and blue shift from approximately 240 nm-210 nm. Nitrate esters exhibited an absorption between 170 nm and 210 nm and absorbance increased with increasing nitrogen content. The relative diversity of the spectra obtained was analyzed by Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). These calculations revealed that the spectra of all the compounds analyzed could be reliably differentiated without any misclassifications.


Assuntos
Ésteres , Cromatografia Gasosa , Análise Discriminante , Espectrofotometria Ultravioleta , Vácuo
7.
J Vis Exp ; (171)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34125086

RESUMO

Gas Chromatography - Mass Spectrometry (GC-MS) is a frequently used technique for the analysis of numerous analytes of forensic interest, including controlled substances, ignitable liquids, and explosives. GC-MS can be coupled with Solid-Phase Microextraction (SPME), in which a fiber with a sorptive coating is placed into the headspace above a sample or immersed in a liquid sample. Analytes are sorbed onto the fiber which is then placed inside the heated GC inlet for desorption. Total Vaporization Solid-Phase Microextraction (TV-SPME) utilizes the same technique as immersion SPME but immerses the fiber into a completely vaporized sample extract. This complete vaporization results in a partition between only the vapor phase and the SPME fiber without interference from a liquid phase or any insoluble materials. Depending upon the boiling point of the solvent used, TV-SPME allows for large sample volumes (e.g., up to hundreds of microliters). On-fiber derivatization may also be performed using TV-SPME. TV-SPME has been used to analyze drugs and their metabolites in hair, urine, and saliva. This simple technique has also been applied to street drugs, lipids, fuel samples, post-blast explosive residues, and pollutants in water. This paper highlights the use of TV-SPME to identify illegal adulterants in very small samples (microliter quantities) of alcoholic beverages. Both gamma-hydroxybutyrate (GHB) and gamma-butyrolactone (GBL) were identified at levels that would be found in spiked drinks. Derivatization by a trimethylsilyl agent allowed for conversion of the aqueous matrix and GHB into their TMS derivatives. Overall, TV-SPME is quick, easy, and requires no sample preparation aside from placing the sample into a headspace vial.


Assuntos
Cabelo , Microextração em Fase Sólida , Cromatografia Gasosa-Espectrometria de Massas , Volatilização , Água
8.
Cancers (Basel) ; 13(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806757

RESUMO

Previous studies have shown that volatile organic compounds (VOCs) are potential biomarkers of breast cancer. An unanswered question is how urinary VOCs change over time as tumors progress. To explore this, BALB/c mice were injected with 4T1.2 triple negative murine tumor cells in the tibia. This typically causes tumor progression and osteolysis in 1-2 weeks. Samples were collected prior to tumor injection and from days 2-19. Samples were analyzed by headspace solid phase microextraction coupled to gas chromatography-mass spectrometry. Univariate analysis identified VOCs that were biomarkers for breast cancer; some of these varied significantly over time and others did not. Principal component analysis was used to distinguish Cancer (all Weeks) from Control and Cancer Week 1 from Cancer Week 3 with over 90% accuracy. Forward feature selection and linear discriminant analysis identified a unique panel that could identify tumor presence with 94% accuracy and distinguish progression (Cancer Week 1 from Cancer Week 3) with 97% accuracy. Principal component regression analysis also demonstrated that a VOC panel could predict number of days since tumor injection (R2 = 0.71 and adjusted R2 = 0.63). VOC biomarkers identified by these analyses were associated with metabolic pathways relevant to breast cancer.

9.
Talanta ; 225: 122081, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592794

RESUMO

Recent advances in benchtop vacuum ultraviolet (VUV) spectrometers have yielded effective universal detectors for gas chromatography (GC). The ability of these detectors to acquire absorbance spectra from 125 nm to 430 nm poses an alternative to the gold standard of mass spectrometry (MS) as a sensitive and selective GC detector. The applications of GC/VUV extend into many areas. Featured here is the potential application of GC/VUV to the analysis of ignitable liquids, which may be found on debris from suspected arson fires. A particular compound class of interest is the alkylbenzenes, as they are a significant component in fuels such as gasoline, petroleum distillates, and aromatic solvents such as degreasers and cleaning solvents. To measure the sensitivity, selectivity and specificity of GC-VUV and GC-MS for alkylbenzenes we employed both library search methods and chemometric analysis using discriminant analysis. The GC-VUV detector was found to have superior specificity to the GC-MS detector in full scan mode. The GC-VUV detector was able to identify all alkylbenzenes correctly, including the correct identification of all structural isomers. LODs for both GC-VUV and GC-MS were found to be picograms on column.

10.
Anal Chim Acta ; 1143: 117-123, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33384109

RESUMO

Gas chromatography/vacuum UV spectroscopy (GC/VUV) was utilized to study various explosives and pharmaceuticals in the nitrate ester and nitramine structural classes. In addition to generating specific VUV spectra for each compound, VUV was used to indicate the onset of thermal decomposition based upon the appearance of break-down products such as nitric oxide, carbon monoxide, formaldehyde, water, and molecular oxygen. The effect of temperature on decomposition could be fit to a logistical function where the fraction of intact compound remaining decreased as the transfer line/flow cell temperature was increased from 200 °C to 300 °C. Utilizing this relationship, the decomposition temperatures for the nitrate ester and nitramine compounds were determined to range between 244 °C and 277 °C. It was also discovered that the decomposition temperature was dependent on the GC carrier gas flow rate and, therefore, the residence time of the compounds in the transfer line/flow cell. For example, the measured decomposition temperature of nitroglycerine ranged from 222 °C to 253 °C across four flow rates. Tracking the appearance/disappearance of decomposition products across this temperature range indicated that NO, CO, and H2CO are final decomposition products while O2 and H2O are intermediate products. The decomposition temperatures for all explosives were highly correlated to similar decomposition measurements taken by differential scanning calorimetry (DSC) (r = 0.91) and thermal gravimetric analysis (TGA) (r = 0.90-0.98). In addition, the decomposition temperatures for all explosives were negatively correlated to the heat of explosion at constant volume (r = -0.68) and strongly positively correlated to the oxygen balance (r = 0.92).

11.
J Forensic Sci ; 66(3): 846-853, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33400824

RESUMO

Total Vaporization Solid-Phase Microextraction (TV-SPME) relies on the same technique as standard SPME but completely vaporizes a sample extract, and analytes are sorbed directly from the vapor phase. On-fiber derivatization may also be performed using TV-SPME, where the fiber is first exposed to the headspace of a vial containing the derivatization agent, then exposed to a new vial containing the sample. É£-Hydroxybutyric acid (GHB) and É£-butyrolactone (GBL) are drugs of concern in that they may be used in drug facilitated sexual assault by surreptitiously spiking them into a victim's beverage. These drugs cause sedation, memory loss, and are difficult to detect in biological samples. One challenge in their analysis is that they can interconvert in aqueous samples, which was demonstrated in samples allowed to stand at room temperature for long periods. A volume study of GBL in water was performed with volumes ranging from 1 to 10,000 µl to compare the efficacy of TV-SPME, headspace SPME, and immersion SPME. Lastly, water, beer, wine, liquor, and mixed drinks were spiked with either GHB or GBL with realistic concentrations (mg/ml) and microliter quantities were analyzed using a TV-SPME Gas Chromatography-Mass Spectrometry method. The GBL volume study demonstrated an increased sensitivity in GBL detection when TV-SPME was utilized. Additionally, GHB and GBL were identified in various beverages at realistic concentrations. Overall, TV-SPME is beneficial because it requires no sample preparation and uses smaller sample volumes than immersion and headspace SPME.


Assuntos
4-Butirolactona/análise , Bebidas Alcoólicas/análise , Hidroxibutiratos/análise , Microextração em Fase Sólida/métodos , Crime , Toxicologia Forense/métodos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Intoxicação/diagnóstico , Volatilização
12.
Anal Chem ; 93(4): 2578-2588, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33432809

RESUMO

Surface-enhanced Raman scattering (SERS) is an ultrasensitive analytical technique, which is capable of providing high specificity; thus, it can be used for toxicological drug assay (detection and quantification). However, SERS-based drug analysis directly in human biofluids requires mitigation of fouling and nonspecificity effects that commonly appeared from unwanted adsorption of endogenous biomolecules present in biofluids (e.g., blood plasma and serum) onto the SERS substrate. Here, we report a bottom-up fabrication strategy to prepare ultrasensitive SERS substrates, first, by functionalizing chemically synthesized gold triangular nanoprisms (Au TNPs) with poly(ethylene glycol)-thiolate in the solid state to avoid protein fouling and second, by generating flexible plasmonic patches to enhance SERS sensitivity via the formation of high-intensity electromagnetic hot spots. Poly(ethylene glycol)-thiolate-functionalized Au TNPs in the form of flexible plasmonic patches show a twofold-improved signal-to-noise ratio in comparison to triethylamine (TEA)-passivated Au TNPs. Furthermore, the plasmonic patch displays a SERS enhancement factor of 4.5 ×107. Utilizing the Langmuir adsorption model, we determine the adsorption constant of drugs for two different surface ligands and observe that the drug molecules display stronger affinity for poly(ethylene glycol) ligands than TEA. Our density functional theory calculations unequivocally support the interaction between drug molecules and poly(ethylene glycol) moieties. Furthermore, the universality of the plasmonic patch for SERS-based drug detection is demonstrated for cocaine, JWH-018, and opioids (fentanyl, despropionyl fentanyl, and heroin) and binary mixture (trace amount of fentanyl in heroin) analyses. We demonstrate the applicability of flexible plasmonic patches for the selective assay of fentanyl at picogram/milliliter concentration levels from drug-of-abuse patients' blood plasma. The fentanyl concentration calculated in the patients' blood plasma from SERS analysis is in excellent agreement with the values determined using the paper spray ionization mass spectrometry technique. We believe that the flexible plasmonic patch fabrication strategy would be widely applicable to any plasmonic nanostructure for SERS-based chemical sensing for clinical toxicology and therapeutic drug monitoring.


Assuntos
Análise Espectral Raman/métodos , Cocaína/química , Fentanila/química , Toxicologia Forense/métodos , Ouro/química , Heroína/química , Humanos , Indóis/química , Limite de Detecção , Espectrometria de Massas , Nanopartículas Metálicas/química , Naftalenos/química , Preparações Farmacêuticas , Plasma
13.
Talanta ; 222: 121461, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33167202

RESUMO

Gas Chromatography-Vacuum UV Spectroscopy (GC-VUV) has seen increased attention in many areas, however, a statistical optimization of VUV method parameters has not been published. This article presents the first statistical optimization of parameters influencing analytes such as cocaine in the VUV flow-cell. Flow-cell temperature, make-up gas pressure, and carrier gas flow rate from the GC were examined and optimized for the detection of controlled substances. The accuracy, precision, linearity, and optimized detection limits for drugs such as cocaine (98.5%, 1.2%, 0.9998, 1.5 ng), heroin (99.3%, 0.94%, 0.9998, 2.0 ng), and fentanyl (98.5%, 1.7%, 0.9752, 9.7 ng) are reported. In general, the limits of detection for cocaine, heroin, fentanyl, and methamphetamine after optimization were comparable to gas chromatography-mass spectrometry (GC-MS) in "scan mode", which had detection limits of 1.1-38 ng on column. The VUV absorption spectra of cocaine, PCP, lorazepam, and HU-210 are also reported. And three samples of "real world" cocaine are analyzed to demonstrate applicability to forensic drug analysis.


Assuntos
Cocaína , Preparações Farmacêuticas , Cromatografia Gasosa-Espectrometria de Massas , Espectrofotometria Ultravioleta , Detecção do Abuso de Substâncias , Vácuo
15.
Appl Spectrosc ; 74(12): 1486-1495, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32192365

RESUMO

Analysis of nitrate ester explosives (e.g., nitroglycerine) using gas chromatography-vacuum ultraviolet spectroscopy (GC-VUV) results in their thermal decomposition into nitric oxide, water, carbon monoxide, oxygen, and formaldehyde. These decomposition products exhibit highly structured spectra in the VUV that is not seen in larger molecules. Computational analysis using time-dependent density functional theory (TDDFT) was utilized to investigate the excited states and vibronic transitions of these decomposition products. The experimental and computational results are compared with those in previous literature using synchrotron spectroscopy, electron energy loss spectroscopy (EELS), photoabsorption spectroscopy, and other computational excited state methods. It was determined that a benchtop GC-VUV detector gives comparable results to those previously reported, and TDDFT could predict vibronic spacing and model molecular orbital diagrams.

16.
Anal Bioanal Chem ; 412(5): 1123-1128, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31900537

RESUMO

Since its introduction, gas chromatography (GC) coupled to vacuum ultraviolet spectrophotometry (VUV) has been shown to complement mass spectrometry (MS) for materials such as petrochemicals, explosives, pesticides, and drugs. In forensic chemistry, opioids are commonly encountered but rarely are the samples pure. This work focuses on GC-VUV analysis applied to naturally occurring (e.g., morphine), semi-synthetic (e.g., heroin), and synthetic (fentanyl) opioids as well as common adulterants and diluents (e.g., lidocaine and quinine). The specificity of the VUV spectra were examined visually as well as via descriptive statistical methods (e.g., correlation coefficients and sums of square residuals). Multivariate pattern recognition techniques (principal component analysis and discriminant analysis (DA)) were used to prove the opioid spectra can be reliably differentiated. The accuracy of the DA model was 100% for a test set of VUV spectra. Finally, three "street" heroin samples were analyzed to show "real-world" performance for forensic analyses. These samples contained adulterants such as caffeine, as well as by-products of heroin manufacture.


Assuntos
Cromatografia Gasosa/métodos , Alcaloides Opiáceos/análise , Espectrofotometria Ultravioleta/métodos , Análise Discriminante , Medicina Legal , Análise de Componente Principal , Reprodutibilidade dos Testes
17.
Sci Justice ; 59(6): 630-634, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31606100

RESUMO

Fast Gas Chromatography (GC) allows for analysis times that are a fraction of those seen in traditional capillary GC. Key modifications in fast GC include using narrow, highly efficient columns that can resolve mixtures using a shorter column length. Hence, a typical fast GC column has an inner diameter of 100-180 µm. However, to maintain phase ratios that are consistent with typical GC columns, the film thickness of fast GC stationary phases are also low (e.g., 0.1-0.18 µm). Unfortunately, decreased film thickness leads to columns with very low sample capacity and asymmetric peaks for analytes that are not sufficiently dilute. This paper describes micro-bore (50 µm i.d.) capillary columns with thick films (1.25 µm), and low phase ratios (10). These columns have greater sample capacity yet also achieve minimum plate heights as low as 110 µm. Hence, separation efficiency is much higher than would be obtained using standard GC columns. The capillary columns were prepared in-house using a simple static-coating procedure and their plate counts were determined under isothermal conditions. The columns were then evaluated using temperature programming for fast GC-MS analysis of ignitable liquids and their residues on fire debris exemplars. Temperature ramps of up to 75 °C min-1 could be used and separations of ignitable liquids such as gasoline, E85 fuel, and lighter fluid (a medium petroleum distillate) were complete within 3 min. Lastly, simulated fire debris consisting of ignitable liquids burned on carpeting were extracted using passive headspace absorption-elution and the residues successfully classified.

18.
Talanta ; 195: 580-586, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625586

RESUMO

Gas chromatography/mass spectrometry (GC/MS) is a "workhorse" instrument for chemical analysis, but it can be limited in its ability to differentiate structurally similar compounds. The coupling of GC to vacuum ultraviolet (VUV) spectroscopy is a recently developed technique with the potential for increased detection specificity. To date, GC/VUV has been demonstrated in the analysis of volatile organic compounds, petroleum products, aroma compounds, pharmaceuticals, illegal drugs, and lipids. This paper is the first to report on the utility of GC/VUV for explosives analysis in general, and the first to report on thermal degradation within the VUV cell and its analytical utility. The general figures of merit and performance of GC/VUV were evaluated with authentic standards of nitrate ester explosives (e.g., nitroglycerine (NG), ethylene glycol dinitrate (EGDN), pentaerythritol tetranitrate (PETN), and erythritol tetranitrate (ETN)). In addition, the explosive analytes were thermally degraded in the VUV cell, yielding reproducible, complex and characteristic mixtures of gas phase products (e.g., nitric oxide, carbon monoxide, and formaldehyde). The relative amounts of the degradation products were estimated via spectral subtraction of library spectra. Lastly, GC/VUV was used to analyze milligram quantities of intact and burned samples of double-base smokeless powders containing nitroglycerine, diphenylamine, ethyl centralite, and dibutylphthalate.

19.
Analyst ; 143(9): 2012-2022, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29431838

RESUMO

Apart from high sensitivity and selectivity of surface-enhanced Raman scattering (SERS)-based trace explosive detection, efficient sampling of explosive residue from real world surfaces is very important for homeland security applications. Herein, we demonstrate an entirely new SERS nanosensor fabrication approach. The SERS nanosensor was prepared by self-assembling chemically synthesized gold triangular nanoprisms (Au TNPs), which we show display strong electromagnetic field enhancements at the sharp tips and edges, onto a pressure-sensitive flexible adhesive film. Our SERS nanosensor provides excellent SERS activity (enhancement factor = ∼6.0 × 106) and limit of detection (as low as 56 parts-per-quadrillions) with high selectivity by chemometric analyses among three commonly military high explosives (TNT, RDX, and PETN). Furthermore, the SERS nanosensors present excellent reproducibility (<4.0% relative standard deviation at 1.0 µM concentration) and unprecedentedly high stability with a "shelf life" of at least 5 months. Finally, TNT and PETN were analyzed and quantified by transferring solid explosive residues from fingerprints left on solid surfaces to the SERS nanosensor. Taken together, the demonstrated sensitivity, selectivity, and reliability of the measurements as well as with the excellent shelf life of our SERS nanosensors obviate the need for complicated sample processing steps required for other analytical techniques, and thus these nanosensors have tremendous potential not only in the field of measurement science but also for homeland security applications to combat acts of terror and military threats.

20.
J Forensic Sci ; 63(1): 58-65, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28464314

RESUMO

The differing effects of weathering and microbial degradation are described here in a comprehensive study that involved 50 different ignitable liquids from the Ignitable Liquids Database and Reference Collection. Examples of ignitable liquid residues from each of the main classes established by the American Society of Testing and Materials are presented. Weathering was accomplished via evaporation, whereas microbial degradation was carried out on soil at room temperature for periods of up to 21 days. Major trends included the rapid degradation of long n-alkanes and monosubstituted alkyl benzenes (e.g., toluene, ethylbenzene, and propylbenzene). Surprisingly, some longer branched alkanes (e.g., trimethyloctanes) were also susceptible to microbial attack. Although all ignitable liquids examined suffered at least to some extent from microbial degradation, gasoline, petroleum distillates, and oxygenates were the most susceptible. Isoparaffinic and naphthenic-paraffinic products were the most resistant to microbial degradation.


Assuntos
Biodegradação Ambiental , Petróleo/análise , Microbiologia do Solo , Volatilização , Cromatografia Gasosa-Espectrometria de Massas , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...