Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Trends Biochem Sci ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670884

RESUMO

In January 2024, a targeted conference, 'CellVis2', was held at Scripps Research in La Jolla, USA, the second in a series designed to explore the promise, practices, roadblocks, and prospects of creating, visualizing, sharing, and communicating physical representations of entire biological cells at scales down to the atom.

2.
Patterns (N Y) ; 5(2): 100931, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38370120

RESUMO

Molecular origami offers an offline way to explore the 3D structures of biology. Visit PDB101.rcsb.org to download free paper models of DNA, green fluorescent protein, viruses, and more.

3.
Curr Res Struct Biol ; 7: 100121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38221989

RESUMO

A lattice-based method is presented for creating 3D models of entire bacterial nucleoids integrating ultrastructural information cryoelectron tomography, genomic and proteomic data, and experimental atomic structures of biomolecules and assemblies. The method is used to generate models of the minimal genome bacterium JCVI-Syn3A, producing a series of models that test hypotheses about transcription, condensation, and overall distribution of the genome. Lattice models are also used to generate atomic models of an entire JCVI-Syn3A cell.

4.
Mol Biol Cell ; 34(10): tp2, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37590933

RESUMO

Condensates have emerged as a new way to understand how cells are organized, and have been invoked to play crucial roles in essentially all cellular processes. In this view, the cell is occupied by numerous assemblies, each composed of member proteins and nucleic acids that preferentially interact with each other. However, available visual representations of condensates fail to communicate the growing body of knowledge about how condensates form and function. The resulting focus on only a subset of the potential implications of condensates can skew interpretations of results and hinder the generation of new hypotheses. Here we summarize the discussion from a workshop that brought together cell biologists, visualization and computation specialists, and other experts who specialize in thinking about space and ways to represent it. We place the recent advances in condensate research in a historical perspective that describes evolving views of the cell; highlight different attributes of condensates that are not well-served by current visual conventions; and survey potential approaches to overcome these challenges. An important theme of these discussions is that the new understanding on the roles of condensates exposes broader challenges in visual representations that apply to cell biological research more generally.

5.
IEEE Comput Graph Appl ; 43(3): 94-101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37195829

RESUMO

Aesthetics for the visualization of biomolecular structures have evolved over the years according to technological advances, user needs, and modes of dissemination. In this article, we explore the goals, challenges, and solutions that have shaped the current landscape of biomolecular imagery from the overlapping perspectives of computer science, structural biology, and biomedical illustration. We discuss changing approaches to rendering, color, human-computer interface, and narrative in the development and presentation of biomolecular graphics. With this historical perspective on the evolving styles and trends in each of these areas, we identify opportunities and challenges for future aesthetics in biomolecular graphics that encourage continued collaboration from multiple intersecting fields.


Assuntos
Gráficos por Computador , Software , Humanos , Interface Usuário-Computador , Biologia Molecular
6.
Protein Sci ; 32(3): e4577, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36700303

RESUMO

An integrative approach to visualization is used to create a visual snapshot of the structural biology of the polar microdomain of Caulobacter crescentus. The visualization is based on the current state of molecular and cellular knowledge of the microdomain and its cellular context. The collaborative process of researching and executing the visualization has identified aspects that are well determined and areas that require further study. The visualization is useful for dissemination, education, and outreach, and the study lays the groundwork for future 3D modeling and simulation of this well-studied example of a cellular condensate.


Assuntos
Caulobacter crescentus , Estrutura Molecular , Proteínas de Bactérias/química
7.
Nucleic Acids Res ; 51(D1): D488-D508, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36420884

RESUMO

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), founding member of the Worldwide Protein Data Bank (wwPDB), is the US data center for the open-access PDB archive. As wwPDB-designated Archive Keeper, RCSB PDB is also responsible for PDB data security. Annually, RCSB PDB serves >10 000 depositors of three-dimensional (3D) biostructures working on all permanently inhabited continents. RCSB PDB delivers data from its research-focused RCSB.org web portal to many millions of PDB data consumers based in virtually every United Nations-recognized country, territory, etc. This Database Issue contribution describes upgrades to the research-focused RCSB.org web portal that created a one-stop-shop for open access to ∼200 000 experimentally-determined PDB structures of biological macromolecules alongside >1 000 000 incorporated Computed Structure Models (CSMs) predicted using artificial intelligence/machine learning methods. RCSB.org is a 'living data resource.' Every PDB structure and CSM is integrated weekly with related functional annotations from external biodata resources, providing up-to-date information for the entire corpus of 3D biostructure data freely available from RCSB.org with no usage limitations. Within RCSB.org, PDB structures and the CSMs are clearly identified as to their provenance and reliability. Both are fully searchable, and can be analyzed and visualized using the full complement of RCSB.org web portal capabilities.


Assuntos
Inteligência Artificial , Bases de Dados de Proteínas , Proteínas , Aprendizado de Máquina , Conformação Proteica , Proteínas/química , Reprodutibilidade dos Testes
8.
9.
Protein Sci ; 32(1): e4530, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36479776

RESUMO

AlphaFold2 is a promising new tool for researchers to predict protein structures and generate high-quality models, with low backbone and global root-mean-square deviation (RMSD) when compared with experimental structures. However, it is unclear if the structures predicted by AlphaFold2 will be valuable targets of docking. To address this question, we redocked ligands in the PDBbind datasets against the experimental co-crystallized receptor structures and against the AlphaFold2 structures using AutoDock-GPU. We find that the quality measure provided during structure prediction is not a good predictor of docking performance, despite accurately reflecting the quality of the alpha carbon alignment with experimental structures. Removing low-confidence regions of the predicted structure and making side chains flexible improves the docking outcomes. Overall, despite high-quality prediction of backbone conformation, fine structural details limit the naive application of AlphaFold2 models as docking targets.


Assuntos
Desenho de Fármacos , Proteínas , Proteínas/química , Ligantes , Simulação de Acoplamento Molecular , Conformação Proteica , Ligação Proteica
10.
Protein Sci ; 31(12): e4482, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36281733

RESUMO

Now in its 52nd year of continuous operations, the Protein Data Bank (PDB) is the premiere open-access global archive housing three-dimensional (3D) biomolecular structure data. It is jointly managed by the Worldwide Protein Data Bank (wwPDB) partnership. The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) is funded by the National Science Foundation, National Institutes of Health, and US Department of Energy and serves as the US data center for the wwPDB. RCSB PDB is also responsible for the security of PDB data in its role as wwPDB-designated Archive Keeper. Every year, RCSB PDB serves tens of thousands of depositors of 3D macromolecular structure data (coming from macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro-electron diffraction). The RCSB PDB research-focused web portal (RCSB.org) makes PDB data available at no charge and without usage restrictions to many millions of PDB data consumers around the world. The RCSB PDB training, outreach, and education web portal (PDB101.RCSB.org) serves nearly 700 K educators, students, and members of the public worldwide. This invited Tools Issue contribution describes how RCSB PDB (i) is organized; (ii) works with wwPDB partners to process new depositions; (iii) serves as the wwPDB-designated Archive Keeper; (iv) enables exploration and 3D visualization of PDB data via RCSB.org; and (v) supports training, outreach, and education via PDB101.RCSB.org. New tools and features at RCSB.org are presented using examples drawn from high-resolution structural studies of proteins relevant to treatment of human cancers by targeting immune checkpoints.


Assuntos
Biologia Computacional , Proteínas , Humanos , Conformação Proteica , Bases de Dados de Proteínas , Proteínas/química , Biologia Computacional/métodos , Substâncias Macromoleculares/química
12.
Emerg Top Life Sci ; 6(3): 231-243, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35801924

RESUMO

The symmetry of biological molecules has fascinated structural biologists ever since the structure of hemoglobin was determined. The Protein Data Bank (PDB) archive is the central global archive of three-dimensional (3D), atomic-level structures of biomolecules, providing open access to the results of structural biology research with no limitations on usage. Roughly 40% of the structures in the archive exhibit some type of symmetry, including formal global symmetry, local symmetry, or pseudosymmetry. The Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (founding member of the Worldwide Protein Data Bank partnership that jointly manages, curates, and disseminates the archive) provides a variety of tools to assist users interested in exploring the symmetry of biological macromolecules. These tools include multiple modalities for searching and browsing the archive, turnkey methods for biomolecular visualization, documentation, and outreach materials for exploring functional biomolecular symmetry.


Assuntos
Biologia Computacional , Proteínas , Biologia Computacional/métodos , Bases de Dados de Proteínas , Biologia Molecular , Proteínas/química
13.
J Integr Bioinform ; 19(2)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35749071

RESUMO

Data from genomics, proteomics, structural biology and cryo-electron microscopy are integrated into a structural illustration of a cross section through an entire JCVI-syn3.0 minimal cell. The illustration is designed with several goals: to inspire excitement in science, to depict the underlying scientific results accurately, and to be feasible in traditional media. Design choices to achieve these goals include reduction of visual complexity with simplified representations, use of orthographic projection to retain scale relationships, and an approach to color that highlights functional compartments of the cell. Given that this simple cell provides an attractive laboratory for exploring the central processes needed for life, several functional narratives are included in the illustration, including division of the cell and the first depiction of an entire cellular proteome. The illustration lays the foundation for 3D molecular modeling of this cell.


Assuntos
Genômica , Biologia Molecular , Microscopia Crioeletrônica , Modelos Moleculares , Proteômica
14.
QRB Discov ; 3: e11, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37529283

RESUMO

Models of insulin secretory vesicles from pancreatic beta cells have been created using the cellPACK suite of tools to research, curate, construct and visualise the current state of knowledge. The model integrates experimental information from proteomics, structural biology, cryoelectron microscopy and X-ray tomography, and is used to generate models of mature and immature vesicles. A new method was developed to generate a confidence score that reconciles inconsistencies between three available proteomes using expert annotations of cellular localisation. The models are used to simulate soft X-ray tomograms, allowing quantification of features that are observed in experimental tomograms, and in turn, allowing interpretation of X-ray tomograms at the molecular level.

15.
Structure ; 30(1): 55-68.e2, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34739839

RESUMO

Structural biologists provide direct insights into the molecular bases of human health and disease. The open-access Protein Data Bank (PDB) stores and delivers three-dimensional (3D) biostructure data that facilitate discovery and development of therapeutic agents and diagnostic tools. We are in the midst of a revolution in vaccinology. Non-infectious mRNA vaccines have been proven during the coronavirus disease 2019 (COVID-19) pandemic. This new technology underpins nimble discovery and clinical development platforms that use knowledge of 3D viral protein structures for societal benefit. The RCSB PDB supports vaccine designers through expert biocuration and rigorous validation of 3D structures; open-access dissemination of structure information; and search, visualization, and analysis tools for structure-guided design efforts. This resource article examines the structural biology underpinning the success of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) mRNA vaccines and enumerates some of the many protein structures in the PDB archive that could guide design of new countermeasures against existing and emerging viral pathogens.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV/imunologia , COVID-19/imunologia , Biologia Computacional/métodos , Bases de Dados de Proteínas , Conformação Proteica , SARS-CoV-2/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/administração & dosagem , COVID-19/epidemiologia , COVID-19/virologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Internet , Modelos Moleculares , Pandemias/prevenção & controle , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Vacinação/métodos , Desenvolvimento de Vacinas/métodos , Proteínas Virais/química , Proteínas Virais/imunologia , Proteínas Virais/ultraestrutura
16.
Protein Sci ; 31(1): 187-208, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34676613

RESUMO

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), funded by the US National Science Foundation, National Institutes of Health, and Department of Energy, has served structural biologists and Protein Data Bank (PDB) data consumers worldwide since 1999. RCSB PDB, a founding member of the Worldwide Protein Data Bank (wwPDB) partnership, is the US data center for the global PDB archive housing biomolecular structure data. RCSB PDB is also responsible for the security of PDB data, as the wwPDB-designated Archive Keeper. Annually, RCSB PDB serves tens of thousands of three-dimensional (3D) macromolecular structure data depositors (using macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro-electron diffraction) from all inhabited continents. RCSB PDB makes PDB data available from its research-focused RCSB.org web portal at no charge and without usage restrictions to millions of PDB data consumers working in every nation and territory worldwide. In addition, RCSB PDB operates an outreach and education PDB101.RCSB.org web portal that was used by more than 800,000 educators, students, and members of the public during calendar year 2020. This invited Tools Issue contribution describes (i) how the archive is growing and evolving as new experimental methods generate ever larger and more complex biomolecular structures; (ii) the importance of data standards and data remediation in effective management of the archive and facile integration with more than 50 external data resources; and (iii) new tools and features for 3D structure analysis and visualization made available during the past year via the RCSB.org web portal.


Assuntos
Biologia Computacional/história , Bases de Dados de Proteínas/história , Interface Usuário-Computador , Aniversários e Eventos Especiais , História do Século XX , História do Século XXI
17.
Protein Sci ; 31(1): 129-140, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34601771

RESUMO

The Protein Data Bank (PDB) archive is a rich source of information in the form of atomic-level three-dimensional (3D) structures of biomolecules experimentally determined using macromolecular crystallography, nuclear magnetic resonance (NMR) spectroscopy, and electron microscopy (3DEM). Originally established in 1971 as a resource for protein crystallographers to freely exchange data, today PDB data drive research and education across scientific disciplines. In 2011, the online portal PDB-101 was launched to support teachers, students, and the general public in PDB archive exploration (pdb101.rcsb.org). Maintained by the Research Collaboratory for Structural Bioinformatics PDB, PDB-101 aims to help train the next generation of PDB users and to promote the overall importance of structural biology and protein science to nonexperts. Regularly published features include the highly popular Molecule of the Month series, 3D model activities, molecular animation videos, and educational curricula. Materials are organized into various categories (Health and Disease, Molecules of Life, Biotech and Nanotech, and Structures and Structure Determination) and searchable by keyword. A biennial health focus frames new resource creation and provides topics for annual video challenges for high school students. Web analytics document that PDB-101 materials relating to fundamental topics (e.g., hemoglobin, catalase) are highly accessed year-on-year. In addition, PDB-101 materials created in response to topical health matters (e.g., Zika, measles, coronavirus) are well received. PDB-101 shows how learning about the diverse shapes and functions of PDB structures promotes understanding of all aspects of biology, from the central dogma of biology to health and disease to biological energy.


Assuntos
Bases de Dados de Proteínas , Proteínas/química , Animais , Cristalografia por Raios X , Humanos , Microscopia Eletrônica , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteômica
18.
Proteins ; 90(5): 1054-1080, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34580920

RESUMO

Understanding the molecular evolution of the SARS-CoV-2 virus as it continues to spread in communities around the globe is important for mitigation and future pandemic preparedness. Three-dimensional structures of SARS-CoV-2 proteins and those of other coronavirusess archived in the Protein Data Bank were used to analyze viral proteome evolution during the first 6 months of the COVID-19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48 000 viral isolates revealed how each one of 29 viral proteins have undergone amino acid changes. Catalytic residues in active sites and binding residues in protein-protein interfaces showed modest, but significant, numbers of substitutions, highlighting the mutational robustness of the viral proteome. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi-Gaussian distribution. Detailed results are presented for potential drug discovery targets and the four structural proteins that comprise the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and protein-protein and protein-nucleic acid interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure-based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.


Assuntos
COVID-19 , Pandemias , Aminoácidos , Humanos , Estudos Prospectivos , Proteoma , SARS-CoV-2 , Proteínas Virais/genética , Proteínas Virais/metabolismo
19.
J Mol Biol ; 434(2): 167351, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34774566

RESUMO

Building structural models of entire cells has been a long-standing cross-discipline challenge for the research community, as it requires an unprecedented level of integration between multiple sources of biological data and enhanced methods for computational modeling and visualization. Here, we present the first 3D structural models of an entire Mycoplasma genitalium (MG) cell, built using the CellPACK suite of computational modeling tools. Our model recapitulates the data described in recent whole-cell system biology simulations and provides a structural representation for all MG proteins, DNA and RNA molecules, obtained by combining experimental and homology-modeled structures and lattice-based models of the genome. We establish a framework for gathering, curating and evaluating these structures, exposing current weaknesses of modeling methods and the boundaries of MG structural knowledge, and visualization methods to explore functional characteristics of the genome and proteome. We compare two approaches for data gathering, a manually-curated workflow and an automated workflow that uses homologous structures, both of which are appropriate for the analysis of mesoscale properties such as crowding and volume occupancy. Analysis of model quality provides estimates of the regularization that will be required when these models are used as starting points for atomic molecular dynamics simulations.


Assuntos
Modelos Estruturais , Mycoplasma/química , Bactérias , Biologia Computacional , Genoma Bacteriano , Simulação de Dinâmica Molecular , Mycoplasma/genética , Mycoplasma genitalium , Proteoma/genética , Transcriptoma
20.
Front Bioinform ; 12021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34790910

RESUMO

CellPAINT is an interactive digital tool that allows non-expert users to create illustrations of the molecular structure of cells and viruses. We present a new release with several key enhancements, including the ability to generate custom ingredients from structure information in the Protein Data Bank, and interaction, grouping, and locking functions that streamline the creation of assemblies and illustration of large, complex scenes. An example of CellPAINT as a tool for hypothesis generation in the interpretation of cryoelectron tomograms is presented. CellPAINT is freely available at http://ccsb.scripps.edu/cellpaint.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...