Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 117(16): 4713-22, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23406418

RESUMO

The E. coli Lac repressor (LacI) tetramer binds simultaneously to a promoter-proximal DNA binding site (operator) and an auxiliary operator, resulting in a DNA loop, which increases repression efficiency. Induction of the lac operon by allolactose reduces the affinity of LacI for DNA, but induction does not completely prevent looping in vivo. Our previous work on the conformations of LacI loops used a hyperstable model DNA construct, 9C14, that contains a sequence directed bend flanked by operators. Single-molecule fluorescence resonance energy transfer (SM-FRET) on a dual fluorophore-labeled LacI-9C14 loop showed that it adopts a single, stable, high-FRET V-shaped LacI conformation. Ligand-induced changes in loop geometry can affect loop stability, and the current work assesses loop population distributions for LacI-9C14 complexes containing the synthetic inducer IPTG. SM-FRET confirms that the high-FRET LacI-9C14 loop is only partially destabilized by saturating IPTG. LacI titration experiments and FRET fluctuation analysis suggest that the addition of IPTG induces loop conformational dynamics and re-equilibration between loop population distributions that include a mixture of looped states that do not exhibit high-efficiency FRET. The results show that repression by looping even at saturating IPTG should be considered in models for regulation of the operon. We propose that persistent DNA loops near the operator function biologically to accelerate rerepression upon exhaustion of inducer.


Assuntos
Proteínas de Escherichia coli/metabolismo , Isopropiltiogalactosídeo/metabolismo , Repressores Lac/metabolismo , Sítios de Ligação , DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Isopropiltiogalactosídeo/química , Repressores Lac/química , Fósforo/química
2.
Nucleic Acids Res ; 40(10): 4432-45, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22307389

RESUMO

DNA looping mediated by the Lac repressor is an archetypal test case for modeling protein and DNA flexibility. Understanding looping is fundamental to quantitative descriptions of gene expression. Systematic analysis of LacI•DNA looping was carried out using a landscape of DNA constructs with lac operators bracketing an A-tract bend, produced by varying helical phasings between operators and the bend. Fluorophores positioned on either side of both operators allowed direct Förster resonance energy transfer (FRET) detection of parallel (P1) and antiparallel (A1, A2) DNA looping topologies anchored by V-shaped LacI. Combining fluorophore position variant landscapes allows calculation of the P1, A1 and A2 populations from FRET efficiencies and also reveals extended low-FRET loops proposed to form via LacI opening. The addition of isopropyl-ß-D-thio-galactoside (IPTG) destabilizes but does not eliminate the loops, and IPTG does not redistribute loops among high-FRET topologies. In some cases, subsequent addition of excess LacI does not reduce FRET further, suggesting that IPTG stabilizes extended or other low-FRET loops. The data align well with rod mechanics models for the energetics of DNA looping topologies. At the peaks of the predicted energy landscape for V-shaped loops, the proposed extended loops are more stable and are observed instead, showing that future models must consider protein flexibility.


Assuntos
DNA/química , Repressores Lac/metabolismo , Regiões Operadoras Genéticas , DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Isopropiltiogalactosídeo/metabolismo , Repressores Lac/química , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA