Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(21): 21240-21250, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37796248

RESUMO

Aluminum nitride (AlN) is one of the few electrically insulating materials with excellent thermal conductivity, but high-quality films typically require exceedingly hot deposition temperatures (>1000 °C). For thermal management applications in dense or high-power integrated circuits, it is important to deposit heat spreaders at low temperatures (<500 °C), without affecting the underlying electronics. Here, we demonstrate 100 nm to 1.7 µm thick AlN films achieved by low-temperature (<100 °C) sputtering, correlating their thermal properties with their grain size and interfacial quality, which we analyze by X-ray diffraction, transmission X-ray microscopy, as well as Raman and Auger spectroscopy. Controlling the deposition conditions through the partial pressure of reactive N2, we achieve an ∼3× variation in thermal conductivity (∼36-104 W m-1 K-1) of ∼600 nm films, with the upper range representing one of the highest values for such film thicknesses at room temperature, especially at deposition temperatures below 100 °C. Defect densities are also estimated from the thermal conductivity measurements, providing insight into the thermal engineering of AlN that can be optimized for application-specific heat spreading or thermal confinement.

2.
Nat Commun ; 14(1): 3465, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308496

RESUMO

Scalable programmable photonic integrated circuits (PICs) can potentially transform the current state of classical and quantum optical information processing. However, traditional means of programming, including thermo-optic, free carrier dispersion, and Pockels effect result in either large device footprints or high static energy consumptions, significantly limiting their scalability. While chalcogenide-based non-volatile phase-change materials (PCMs) could mitigate these problems thanks to their strong index modulation and zero static power consumption, they often suffer from large absorptive loss, low cyclability, and lack of multilevel operation. Here, we report a wide-bandgap PCM antimony sulfide (Sb2S3)-clad silicon photonic platform simultaneously achieving low loss (<1.0 dB), high extinction ratio (>10 dB), high cyclability (>1600 switching events), and 5-bit operation. These Sb2S3-based devices are programmed via on-chip silicon PIN diode heaters within sub-ms timescale, with a programming energy density of [Formula: see text]. Remarkably, Sb2S3 is programmed into fine intermediate states by applying multiple identical pulses, providing controllable multilevel operations. Through dynamic pulse control, we achieve 5-bit (32 levels) operations, rendering 0.50 ± 0.16 dB per step. Using this multilevel behavior, we further trim random phase error in a balanced Mach-Zehnder interferometer.

3.
Small ; 19(28): e2301383, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36971287

RESUMO

Thermal transport in polymer nanocomposites becomes dependent on the interfacial thermal conductance due to the ultra-high density of the internal interfaces when the polymer and filler domains are intimately mixed at the nanoscale. However, there is a lack of experimental measurements that can link the thermal conductance across the interfaces to the chemistry and bonding between the polymer molecules and the glass surface. Characterizing the thermal properties of amorphous composites are a particular challenge as their low intrinsic thermal conductivity leads to poor measurement sensitivity of the interfacial thermal conductance. To address this issue here, polymers are confined in porous organosilicates with high interfacial densities, stable composite structure, and varying surface chemistries. The thermal conductivities and fracture energies of the composites are measured with frequency dependent time-domain thermoreflectance (TDTR) and thin-film fracture testing, respectively. Effective medium theory (EMT) along with finite element analysis (FEA) is then used to uniquely extract the thermal boundary conductance (TBC) from the measured thermal conductivity of the composites. Changes in TBC are then linked to the hydrogen bonding between the polymer and organosilicate as quantified by Fourier-transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopy. This platform for analysis is a new paradigm in the experimental investigation of heat flow across constituent domains.

4.
iScience ; 26(1): 105812, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36624838

RESUMO

An estimated 70% of the electricity in the United States currently passes through power conversion electronics, and this percentage is projected to increase eventually to up to 100%. At a global scale, wide adoption of highly efficient power electronics technologies is thus anticipated to have a major impact on worldwide energy consumption. As described in this perspective, for power conversion, outstanding thermal management for semiconductor devices is one key to unlocking this potentially massive energy savings. Integrated microscale cooling has been positively identified for such thermal management of future high-heat-flux, i.e., 1 kW/cm2, wide-bandgap (WBG) semiconductor devices. In this work, we connect this advanced cooling approach to the energy impact of using WBG devices and further present a techno-economic analysis to clarify the projected status of performance, manufacturing approaches, fabrication costs, and remaining barriers to the adoption of such cooling technology.

5.
Adv Mater ; 35(30): e2300107, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36720651

RESUMO

Phase-change memory (PCM) is a promising candidate for neuro-inspired, data-intensive artificial intelligence applications, which relies on the physical attributes of PCM materials including gradual change of resistance states and multilevel operation with low resistance drift. However, achieving these attributes simultaneously remains a fundamental challenge for PCM materials such as Ge2 Sb2 Te5 , the most commonly used material. Here bi-directional gradual resistance changes with ≈10× resistance window using low energy pulses are demonstrated in nanoscale PCM devices based on Ge4 Sb6 Te7 , a new phase-change nanocomposite material . These devices show 13 resistance levels with low resistance drift for the first 8 levels, a resistance on/off ratio of ≈1000, and low variability. These attributes are enabled by the unique microstructural and electro-thermal properties of Ge4 Sb6 Te7 , a nanocomposite consisting of epitaxial SbTe nanoclusters within the Ge-Sb-Te matrix, and a higher crystallization but lower melting temperature than Ge2 Sb2 Te5 . These results advance the pathway toward energy-efficient analog computing using PCM.

6.
Nano Lett ; 22(15): 6285-6291, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35876819

RESUMO

Superlattice (SL) phase change materials have shown promise to reduce the switching current and resistance drift of phase change memory (PCM). However, the effects of internal SL interfaces and intermixing on PCM performance remain unexplored, although these are essential to understand and ensure reliable memory operation. Here, using nanometer-thin layers of Ge2Sb2Te5 and Sb2Te3 in SL-PCM, we uncover that both switching current density (Jreset) and resistance drift coefficient (v) decrease as the SL period thickness is reduced (i.e., higher interface density); however, interface intermixing within the SL increases both. The signatures of distinct versus intermixed interfaces also show up in transmission electron microscopy, X-ray diffraction, and thermal conductivity measurements of our SL films. Combining the lessons learned, we simultaneously achieve low Jreset ≈ 3-4 MA/cm2 and ultralow v ≈ 0.002 in mushroom-cell SL-PCM with ∼110 nm bottom contact diameter, thus advancing SL-PCM technology for high-density storage and neuromorphic applications.


Assuntos
Condutividade Térmica , Difração de Raios X
7.
Nano Lett ; 22(13): 5443-5450, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35715219

RESUMO

Designing materials with ultralow thermal conductivity has broad technological impact, from thermal protection to energy harvesting. Low thermal conductivity is commonly observed in anharmonic and strongly disordered materials, yet a microscopic understanding of the correlation to atomic motion is often lacking. Here we report that molecular insertion into an existing two-dimensional layered lattice structure creates a hybrid superlattice with extremely low thermal conductivity. Vibrational characterization and ab initio molecular dynamics simulations reveal strong damping of transverse acoustic waves and significant softening of longitudinal vibrations. Together with spectral correlation analysis, we demonstrate that the molecular insertion creates liquid-like atomic motion in the existing lattice framework, causing a large suppression of heat conduction. The hybrid materials can be transformed into solution-processable coatings and used for thermal protection in wearable electronics. Our work provides a generic mechanism for the design of heat insulators and may further facilitate the engineering of heat conduction based on understanding atomic correlations.


Assuntos
Eletrônica , Temperatura Alta , Movimento (Física) , Condutividade Térmica , Vibração
8.
Langmuir ; 38(1): 221-230, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34967627

RESUMO

As electronic device power densities continue to increase, vapor chambers and heat pipes have emerged as effective thermal management solutions for hotspot mitigation. A crucial aspect of vapor chamber functionality depends on the properties of the microporous wick that drives heat and mass transport within the device. While many prior studies have focused on the optimization of these porous structures to increase the maximum capillary-limited dryout heat flux, an equally important aspect of porous wick design is the minimization of the thermal resistance above heated areas. Segmented wicks with geometries that vary along the length of the wick are attractive candidates that can potentially be used to fulfill these simultaneous design goals. Previous studies on bisegmented wicks with only two distinct adiabatic and heated region geometries, however, have shown mixed results regarding the degree of performance benefit over homogeneous wicks. In this work, we present a systematic modeling approach to investigate the optimal composition of segmented micropillar wicks comprising multiple, discrete regions of graded geometry. Using a genetic algorithm, we generate Pareto fronts of optimal segmented wick distributions that maximize the dryout heat flux and minimize the thermal resistance for a given heating configuration. We find that optimal, graded segmented wicks are capable of dissipating dryout heat fluxes more than 200% higher than baseline homogeneous wicks with significantly lower thermal resistance. The sensitivity of the wick performance to the total number of geometry segments is found to vary depending on the desired heat flux and thermal resistance operating regimes.

9.
ACS Nano ; 15(12): 19503-19512, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34813267

RESUMO

Layering two-dimensional van der Waals materials provides a high degree of control over atomic placement, which could enable tailoring of vibrational spectra and heat flow at the sub-nanometer scale. Here, using spatially resolved ultrafast thermoreflectance and spectroscopy, we uncover the design rules governing cross-plane heat transport in superlattices assembled from monolayers of graphene (G) and MoS2 (M). Using a combinatorial experimental approach, we probe nine different stacking sequences, G, GG, MG, GGG, GMG, GGMG, GMGG, GMMG, and GMGMG, and identify the effects of vibrational mismatch, interlayer adhesion, and junction asymmetry on thermal transport. Pure G sequences display evidence of quasi-ballistic transport, whereas adding even a single M layer strongly disrupts heat conduction. The experimental data are described well by molecular dynamics simulations, which include thermal expansion, accounting for the effect of finite temperature on the interlayer spacing. The simulations show that an increase of ∼2.4% in the layer separation of GMGMG, relative to its value at 300 K, can lead to a doubling of the thermal resistance. Using these design rules, we experimentally demonstrate a five-layer GMGMG superlattice "thermal metamaterial" with an ultralow effective cross-plane thermal conductivity comparable to that of air.

10.
ACS Appl Mater Interfaces ; 13(48): 58059-58065, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34797056

RESUMO

Metal-oxide thermal boundary conductance (TBC) strongly influences the temperature rise in nanostructured systems, such as dense interconnects, when its value is comparable to the thermal conductance of the amorphous dielectric oxide. However, the thermal characterization of metal-amorphous oxide TBC is often hampered by the measurement insensitivity of techniques such as time-domain thermoreflectance (TDTR). Here, we use metal nanograting structures as opto-thermal transducers in TDTR to measure the TBC of metal-oxide interfaces. Combined with an ultrafast pump-probe laser measurement approach, the nanopatterned structures amplify the contribution of the thermal boundary resistance (TBR), the inverse of TBC, over the thermal resistance of the adjacent material, thereby enhancing measurement sensitivity. For demonstration purposes, we report the TBC between Al and SiO2 films. We then compare the impact of Al grating dimensions on the measured TBC values, sensitivities, and uncertainties. The grating periods L used in this study range from 150 to 300 nm, and the bridge widths w range from 72 to 205 nm. With the narrowest grating transducers (72 nm), the TBC of Al-SiO2 interfaces is measured to be 159-48+61 MW m-2 K-1, with the experimental sensitivity being 5× higher than that of a blanket Al film. This improvement is attributed to the reduced contribution of the SiO2 film thermal resistance to the temperature signal from TDTR response. The nanograting measurement approach described here is promising for the thermal characterization of a variety of nanostructured metal-amorphous passivation systems and interfaces common in semiconductor technology.

11.
Nat Commun ; 12(1): 6122, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675199

RESUMO

Perspiration evaporation plays an indispensable role in human body heat dissipation. However, conventional textiles tend to focus on sweat removal and pay little attention to the basic thermoregulation function of sweat, showing limited evaporation ability and cooling efficiency in moderate/profuse perspiration scenarios. Here, we propose an integrated cooling (i-Cool) textile with unique functional structure design for personal perspiration management. By integrating heat conductive pathways and water transport channels decently, i-Cool exhibits enhanced evaporation ability and high sweat evaporative cooling efficiency, not merely liquid sweat wicking function. In the steady-state evaporation test, compared to cotton, up to over 100% reduction in water mass gain ratio, and 3 times higher skin power density increment for every unit of sweat evaporation are demonstrated. Besides, i-Cool shows about 3 °C cooling effect with greatly reduced sweat consumption than cotton in the artificial sweating skin test. The practical application feasibility of i-Cool design principles is well validated based on commercial fabrics. Owing to its exceptional personal perspiration management performance, we expect the i-Cool concept can provide promising design guidelines for next-generation perspiration management textiles.


Assuntos
Suor/química , Sudorese , Têxteis/análise , Regulação da Temperatura Corporal , Temperatura Alta , Humanos , Temperatura Cutânea , Suor/metabolismo
12.
Nano Lett ; 21(14): 5984-5990, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34270270

RESUMO

Superlattice-like phase change memory (SL-PCM) promises lower switching current than conventional PCM based on Ge2Sb2Te5 (GST); however, a fundamental understanding of SL-PCM requires detailed characterization of the interfaces within such an SL. Here we explore the electrical and thermal transport of SLs with deposited Sb2Te3 and GeTe alternating layers of various thicknesses. We find up to an approximately four-fold reduction of the effective cross-plane thermal conductivity of the SL stack (as-deposited polycrystalline) compared with polycrystalline GST (as-deposited amorphous and later annealed) due to the thermal interface resistances within the SL. Thermal measurements with varying periods of our SLs show a signature of phonon coherence with a transition from wave-like to particle-like phonon transport, further described by our modeling. Electrical resistivity measurements of such SLs reveal strong anisotropy (∼2000×) between the in-plane and cross-plane directions due to the weakly interacting van der Waals-like gaps. This work uncovers electrothermal transport in SLs based on Sb2Te3 and GeTe for the improved design of low-power PCM.

13.
ACS Appl Mater Interfaces ; 13(18): 21905-21913, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33914509

RESUMO

Interfaces govern thermal transport in a variety of nanostructured systems such as FinFETs, interconnects, and vias. Thermal boundary resistances, however, critically depend on the choice of materials, nanomanufacturing processes and conditions, and the planarity of interfaces. In this work, we study the interfacial thermal transport between a nonreactive metal (Pt) and a dielectric by engineering two differing bonding characters: (i) the mechanical adhesion/van der Waals bonding offered by the physical vapor deposition (PVD) and (ii) the chemical bonding generated by plasma-enhanced atomic layer deposition (PEALD). We introduce 40-cycle (∼2 nm thick), nearly continuous PEALD Pt films between 98 nm PVD Pt and dielectric materials (8.0 nm TiO2/Si and 11.0 nm Al2O3/Si) treated with either O2 or O2 + H2 plasma to modulate their bonding strengths. By correlating the treatments through thermal transport measurements using time-domain thermoreflectance (TDTR), we find that the thermal boundary resistances are consistently reduced with the same increased treatment complexity that has been demonstrated in the literature to enhance mechanical adhesion. For samples on TiO2 (Al2O3), reductions in thermal resistance are at least 4% (10%) compared to those with no PEALD Pt at all, but could be as large as 34% (42%) given measurement uncertainties that could be improved with thinner nucleation layers. We suspect the O2 plasma generates stronger covalent bonds to the substrate, while the H2 plasma strips the PEALD Pt of contaminants such as carbon that gives rise to a less thermally resistive heat conduction pathway.

14.
Adv Sci (Weinh) ; 8(3): 2002876, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33552867

RESUMO

Transmission electron microscopy (TEM) is arguably the most important tool for atomic-scale material characterization. A significant portion of the energy of transmitted electrons is transferred to the material under study through inelastic scattering, causing inadvertent damage via ionization, radiolysis, and heating. In particular, heat generation complicates TEM observations as the local temperature can affect material properties. Here, the heat generation due to electron irradiation is quantified using both top-down and bottom-up approaches: direct temperature measurements using nanowatt calorimeters as well as the quantification of energy loss due to inelastic scattering events using electron energy loss spectroscopy. Combining both techniques, a microscopic model is developed for beam-induced heating and to identify the primary electron-to-heat conversion mechanism to be associated with valence electrons. Building on these results, the model provides guidelines to estimate temperature rise for general materials with reasonable accuracy. This study extends the ability to quantify thermal impact on materials down to the atomic scale.

15.
Nanotechnology ; 32(26)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33601363

RESUMO

Layered two-dimensional (2D) materials such as MoS2have attracted much attention for nano- and opto-electronics. Recently, intercalation (e.g. of ions, atoms, or molecules) has emerged as an effective technique to modulate material properties of such layered 2D films reversibly. We probe both the electrical and thermal properties of Li-intercalated bilayer MoS2nanosheets by combining electrical measurements and Raman spectroscopy. We demonstrate reversible modulation of carrier density over more than two orders of magnitude (from 0.8 × 1012to 1.5 × 1014cm-2), and we simultaneously obtain the thermal boundary conductance between the bilayer and its supporting SiO2substrate for an intercalated system for the first time. This thermal coupling can be reversibly modulated by nearly a factor of eight, from 14 ± 4.0 MW m-2K-1before intercalation to 1.8 ± 0.9 MW m-2K-1when the MoS2is fully lithiated. These results reveal electrochemical intercalation as a reversible tool to modulate and control both electrical and thermal properties of 2D layers.

16.
ACS Appl Mater Interfaces ; 12(40): 44912-44918, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32915545

RESUMO

The ability to control the properties of dielectric thin films on demand is of fundamental interest in nanoscale devices. Here, we modulate plasma characteristics at the surface of a substrate to tune both dielectric constant and thermal conductivity of amorphous thin films grown using plasma-enhanced atomic layer deposition. Specifically, we apply a substrate bias ranging from 0 to ∼117 V and demonstrate the systematic tunability of various material parameters of Al2O3. As a function of the substrate bias, we find a nonmonotonical evolution of intrinsic properties, including density, dielectric constant, and thermal conductivity. A key observation is that the maximum values in dielectric constant and effective thermal conductivity emerge at different substrate biases. The impact of density on both thermal conductivity and dielectric constant is further examined using a differential effective medium theory and the Clausius-Mossotti model, respectively. We find that the peak value in the dielectric constant deviates from the Clausius-Mossotti model, indicating the change of oxygen fraction in our thin films as a function of substrate bias. This finding suggests that the increased local strength of plasma sheath not only enhances material density but also controls the dynamics of microstructural defect formation beyond what is possible with conventional approaches. Based on our experimental observations and modeling, we further build a phenomenological relation between dielectric constant and thermal conductivity. Our results pave invaluable avenues for optimizing dielectric thin films at the atomic scale for a wide range of applications in nanoelectronics and energy devices.

17.
Adv Mater ; 32(37): e2003020, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32743836

RESUMO

Forming pits on molybdenum disulfide (MoS2 ) monolayers is desirable for (opto)electrical, catalytic, and biological applications. Thermal oxidation is a potentially scalable method to generate pits on monolayer MoS2 , and pits are assumed to preferentially form around undercoordinated sites, such as sulfur vacancies. However, studies on thermal oxidation of MoS2 monolayers have not considered the effect of adventitious carbon (C) that is ubiquitous and interacts with oxygen at elevated temperatures. Herein, the effect of adventitious C on the pit formation on MoS2 monolayers during thermal oxidation is studied. The in situ environmental transmission electron microscopy measurements herein show that pit formation is preferentially initiated at the interface between adventitious C nanoparticles and MoS2 , rather than only sulfur vacancies. Density functional theory (DFT) calculations reveal that the C/MoS2 interface favors the sequential adsorption of oxygen atoms with facile kinetics. These results illustrate the important role of adventitious C on pit formation on monolayer MoS2 .

18.
Nat Commun ; 10(1): 4465, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562331

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Nano Lett ; 19(4): 2434-2442, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30808167

RESUMO

Layered two-dimensional (2D) materials have highly anisotropic thermal properties between the in-plane and cross-plane directions. Conventionally, it is thought that cross-plane thermal conductivities (κ z) are low, and therefore c-axis phonon mean free paths (MFPs) are small. Here, we measure κ z across MoS2 films of varying thickness (20-240 nm) and uncover evidence of very long c-axis phonon MFPs at room temperature in these layered semiconductors. Experimental data obtained using time-domain thermoreflectance (TDTR) are in good agreement with first-principles density functional theory (DFT). These calculations suggest that ∼50% of the heat is carried by phonons with MFP > 200 nm, exceeding kinetic theory estimates by nearly 2 orders of magnitude. Because of quasi-ballistic effects, the κ z of nanometer-thin films of MoS2 scales with their thickness and the volumetric thermal resistance asymptotes to a nonzero value, ∼10 m2 K GW-1. This contributes as much as 30% to the total thermal resistance of a 20 nm thick film, the rest being limited by thermal interface resistance with the SiO2 substrate and top-side aluminum transducer. These findings are essential for understanding heat flow across nanometer-thin films of MoS2 for optoelectronic and thermoelectric applications.

20.
Nat Commun ; 9(1): 4510, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30375375

RESUMO

The ability to actively regulate heat flow at the nanoscale could be a game changer for applications in thermal management and energy harvesting. Such a breakthrough could also enable the control of heat flow using thermal circuits, in a manner analogous to electronic circuits. Here we demonstrate switchable thermal transistors with an order of magnitude thermal on/off ratio, based on reversible electrochemical lithium intercalation in MoS2 thin films. We use spatially-resolved time-domain thermoreflectance to map the lithium ion distribution during device operation, and atomic force microscopy to show that the lithiated state correlates with increased thickness and surface roughness. First principles calculations reveal that the thermal conductance modulation is due to phonon scattering by lithium rattler modes, c-axis strain, and stacking disorder. This study lays the foundation for electrochemically-driven nanoscale thermal regulators, and establishes thermal metrology as a useful probe of spatio-temporal intercalant dynamics in nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...