Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Alzheimer Res ; 20(10): 705-714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288825

RESUMO

BACKGROUND: Indoleamine 2,3-dioxygenase (IDO1) inhibition is a promising target as an Alzheimer's disease (AD) Disease-modifying therapy capable of downregulating immunopathic neuroinflammatory processes. METHODS: To aid in the development of IDO inhibitors as potential AD therapeutics, we optimized a lipopolysaccharide (LPS) based mouse model of brain IDO1 inhibition by examining the dosedependent and time-course of the brain kynurenine:tryptophan (K:T) ratio to LPS via intraperitoneal dosing. RESULTS: We determined the optimal LPS dose to increase IDO1 activity in the brain, and the ideal time point to quantify the brain K:T ratio after LPS administration. We then used a brain penetrant tool compound, EOS200271, to validate the model, determine the optimal dosing profile and found that a complete rescue of the K:T ratio was possible with the tool compound. CONCLUSION: This LPS-based model of IDO1 target engagement is a useful tool that can be used in the development of brain penetrant IDO1 inhibitors for AD. A limitation of the present study is the lack of quantification of potential clinically relevant biomarkers in this model, which could be addressed in future studies.


Assuntos
Doença de Alzheimer , Lipopolissacarídeos , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Doença de Alzheimer/tratamento farmacológico , Triptofano/farmacologia , Cinurenina/farmacologia , Encéfalo , Inibidores Enzimáticos/farmacologia
2.
ACS Med Chem Lett ; 9(2): 131-136, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29456801

RESUMO

Inhibition of indoleamine 2,3-dioxygenase (IDO1) is an attractive immunotherapeutic approach for the treatment of a variety of cancers. Dysregulation of this enzyme has also been implicated in other disorders including Alzheimer's disease and arthritis. Herein, we report the structure-based design of two related series of molecules: N1-substituted 5-indoleimidazoles and N1-substituted 5-phenylimidazoles. The latter (and more potent) series was accessed through an unexpected rearrangement of an imine intermediate during a Van Leusen imidazole synthesis reaction. Evidence for the binding modes for both inhibitor series is supported by computational and structure-activity relationship studies.

3.
Angew Chem Int Ed Engl ; 54(51): 15429-33, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26545827

RESUMO

Pyrrolidine-based iminocyclitols are a promising class of glycosidase inhibitors. Reported herein is a convenient epimerization strategy that provides direct access to a range of stereoisomeric iminocyclitol inhibitors of O-GlcNAcase (OGA), the enzyme responsible for catalyzing removal of O-GlcNAc from nucleocytoplasmic proteins. Structural details regarding the binding of these inhibitors to a bacterial homologue of OGA reveal the basis for potency. These compounds are orally available and permeate into rodent brain to increase O-GlcNAc, and should prove useful tools for studying the role of OGA in health and disease.


Assuntos
Encéfalo/metabolismo , Ciclitóis/farmacocinética , Inibidores Enzimáticos/farmacocinética , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , Animais , Ciclitóis/química , Inibidores Enzimáticos/química , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...