Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
J Neurol Sci ; 462: 123065, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38820737

RESUMO

A stroke can disrupt the finely tuned language network resulting in aphasia, a language impairment. Though many stroke survivors with aphasia recover within the first 6 months, a significant proportion have lasting deficits. The factors contributing to optimal treatment response remain unclear. Some evidence suggests that increased modularity or fragmentation of brain networks may underlie post-stroke aphasia severity and the extent of recovery. We examined associations between network organization and aphasia recovery in sixteen chronic stroke survivors with non-fluent aphasia following 35 h of Multi-Modality Aphasia Therapy over 10 days and 20 healthy controls who underwent imaging at a single timepoint. Using diffusion-weighted scans obtained before and after treatment, we constructed whole-brain structural connectomes representing the number of probabilistic streamlines between brain regions. Graph theory metrics were quantified for each connectome using the Brain Connectivity Toolbox. Correlations were examined between graph metrics and speech performance measured using the Boston Naming Test (BNT) at pre-, post- and 3-months post-intervention. Compared to controls, participants with stroke demonstrated higher whole-brain modularity at pre-treatment. Modularity did not differ between pre- and post-treatment. In individuals who responded to therapy, higher pre-treatment modularity was associated with worse performance on the BNT. Moreover, higher pre-treatment participation coefficients (i.e., how well a region is connected outside its own module) for the left IFG, planum temporale, and posterior temporal gyri were associated with greater improvements at post-treatment. These results suggest that pre-treatment network topology may impact therapeutic gains, highlighting the influence of network organization on post-stroke aphasia recovery.

2.
Brain ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723175

RESUMO

Various subjective and objective methods have been proposed to identify which interictal epileptiform discharge (IED)-related EEG-fMRI results are more likely to delineate seizure generating tissue in patients with drug-resistant focal epilepsy for the purposes of surgical planning. In this intracranial EEG-fMRI study, we evaluated the utility of these methods to localize clinically relevant regions pre-operatively and compared the extent of resection of these areas to post-operative outcome. Seventy patients admitted for intracranial video-EEG monitoring were recruited for a simultaneous intracranial EEG-fMRI study. For all analyses of blood oxygen level-dependent responses associated with IEDs, an experienced epileptologist identified the most Clinically Relevant brain activation cluster using available clinical information. The Maximum cluster (the cluster with the highest z-score) was also identified for all analyses and assigned to one of three confidence levels (low, medium, or high) based on the difference of the peak z-scores between the Maximum and Second Maximum cluster (the cluster with the second highest peak z-value). The distance was measured and compared between the peak voxel of the aforementioned clusters and the electrode contacts where the interictal discharge and seizure onset were recorded. In patients who subsequently underwent epilepsy surgery, the spatial concordance between the aforementioned clusters and the area of resection was determined and compared to post-operative outcome. We evaluated 106 different IEDs in 70 patients. Both subjective (identification of the Clinically Relevant cluster) and objective (Maximum cluster much more significant than the second maximum cluster) methods of culling non-localizing EEG-fMRI activation maps increased the spatial concordance between these clusters and the corresponding IED or seizure onset zone contacts. However, only the objective methods of identifying medium and high confidence maps resulted in a significant association between resection of the peak voxel of the Maximum cluster and post-operative outcome. Resection of this area was associated with good post-operative outcomes but was not sufficient for seizure freedom. On the other hand, we found that failure to resect the medium and high confidence Maximum clusters was associated with a poor post-surgical outcome (negative predictive value = 1.0, sensitivity = 1.0). Objective methods to identify higher confidence EEG-fMRI results are needed to localize areas necessary for good post-operative outcomes. However, resection of the peak voxel within higher confidence Maximum clusters is not sufficient for good outcomes. Conversely, failure to resect the peak voxel in these clusters is associated with a poor post-surgical outcome.

3.
PLoS One ; 19(3): e0299284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427616

RESUMO

Brain imaging with a high-spatiotemporal resolution is crucial for accurate brain-function mapping. Electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) are two popular neuroimaging modalities with complementary features that record brain function with high temporal and spatial resolution, respectively. One popular non-invasive way to obtain data with both high spatial and temporal resolutions is to combine the fMRI activation map and EEG data to improve the spatial resolution of the EEG source localization. However, using the whole fMRI map may cause spurious results for the EEG source localization, especially for deep brain regions. Considering the head's conductivity, deep regions' sources with low activity are unlikely to be detected by the EEG electrodes at the scalp. In this study, we use fMRI's high spatial-frequency component to identify the local high-intensity activations that are most likely to be captured by the EEG. The 3D Empirical Mode Decomposition (3D-EMD), a data-driven method, is used to decompose the fMRI map into its spatial-frequency components. Different validation measurements for EEG source localization show improved performance for the EEG inverse-modeling informed by the fMRI's high-frequency spatial component compared to the fMRI-informed EEG source-localization methods. The level of improvement varies depending on the voxels' intensity and their distribution. Our experimental results also support this conclusion.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Eletroencefalografia
4.
J Neurotrauma ; 41(5-6): 587-603, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37489293

RESUMO

Advanced magnetic resonance imaging (MRI) techniques indicate that concussion (i.e., mild traumatic brain injury) disrupts brain structure and function in children. However, the functional connectivity of brain regions within global and local networks (i.e., functional connectome) is poorly understood in pediatric concussion. This prospective, longitudinal study addressed this gap using data from the largest neuroimaging study of pediatric concussion to date to study the functional connectome longitudinally after concussion as compared with mild orthopedic injury (OI). Children and adolescents (n = 967) 8-16.99 years with concussion or mild OI were recruited from pediatric emergency departments within 48 h post-injury. Pre-injury and 1-month post-injury symptom ratings were used to classify concussion with or without persistent symptoms based on reliable change. Subjects completed a post-acute (2-33 days) and chronic (3 or 6 months via random assignment) MRI scan. Graph theory metrics were derived from 918 resting-state functional MRI scans in 585 children (386 concussion/199 OI). Linear mixed-effects modeling was performed to assess group differences over time, correcting for multiple comparisons. Relative to OI, the global clustering coefficient was reduced at 3 months post-injury in older children with concussion and in females with concussion and persistent symptoms. Time post-injury and sex moderated group differences in local (regional) network metrics of several brain regions, including degree centrality, efficiency, and clustering coefficient of the angular gyrus, calcarine fissure, cuneus, and inferior occipital, lingual, middle occipital, post-central, and superior occipital gyrus. Relative to OI, degree centrality and nodal efficiency were reduced post-acutely, and nodal efficiency and clustering coefficient were reduced chronically after concussion (i.e., at 3 and 6 months post-injury in females; at 6 months post-injury in males). Functional network alterations were more robust and widespread chronically as opposed to post-acutely after concussion, and varied by sex, age, and symptom recovery at 1-month post-injury. Local network segregation reductions emerged globally (across the whole brain network) in older children and in females with poor recovery chronically after concussion. Reduced functioning between neighboring regions could negatively disrupt specialized information processing. Local network metric alterations were demonstrated in several posterior regions that are involved in vision and attention after concussion relative to OI. This indicates that functioning of superior parietal and occipital regions could be particularly susceptibile to the effects of concussion. Moreover, those regional alterations were especially apparent at later time periods post-injury, emerging after post-concussive symptoms resolved in most and persisted up to 6 months post-injury, and differed by biological sex. This indicates that neurobiological changes continue to occur up to 6 months after pediatric concussion, although changes emerge earlier in females than in males. Changes could reflect neural compensation mechanisms.


Assuntos
Concussão Encefálica , Conectoma , Adolescente , Criança , Feminino , Humanos , Masculino , Encéfalo/diagnóstico por imagem , Concussão Encefálica/diagnóstico por imagem , Estudos Longitudinais , Estudos Prospectivos
5.
Hum Brain Mapp ; 45(1): e26541, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38053448

RESUMO

Deficits in proprioception, the knowledge of limb position and movement in the absence of vision, occur in ~50% of all strokes; however, our lack of knowledge of the neurological mechanisms of these deficits diminishes the effectiveness of rehabilitation and prolongs recovery. We performed resting-state functional magnetic resonance imaging (fMRI) on stroke patients to determine functional brain networks that exhibited changes in connectivity in association with proprioception deficits determined by a Kinarm robotic exoskeleton assessment. Thirty stroke participants were assessed for proprioceptive impairments using a Kinarm robot and underwent resting-state fMRI at 1 month post-stroke. Age-matched healthy control (n = 30) fMRI data were also examined and compared to stroke data in terms of the functional connectivity of brain regions associated with proprioception. Stroke patients exhibited reduced connectivity of the supplementary motor area and the supramarginal gyrus, relative to controls. Functional connectivity of these regions plus primary somatosensory cortex and parietal opercular area was significantly associated with proprioceptive function. The parietal lobe of the lesioned hemisphere is a significant node for proprioception after stroke. Assessment of functional connectivity of this region after stroke may assist with prognostication of recovery. This study also provides potential targets for therapeutic neurostimulation to aid in stroke recovery.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Propriocepção/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodos , Encéfalo/diagnóstico por imagem , Lobo Parietal , Hipestesia , Imageamento por Ressonância Magnética
6.
Neurophotonics ; 10(3): 035005, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37409179

RESUMO

Significance: Functional near-infrared spectroscopy (fNIRS), with its measure of delta hemoglobin concentration, has shown promise as a monitoring tool for the functional assessment of neurological disorders and brain injury. Analysis of fNIRS data often involves averaging data from several channel pairs in a region. Although this greatly reduces the processing time, it is uncertain how it affects the ability to detect changes post injury. Aim: We aimed to determine how averaging data within regions impacts the ability to differentiate between post-concussion and healthy controls. Approach: We compared interhemispheric coherence data from 16 channel pairs across the left and right dorsolateral prefrontal cortex during a task and a rest period. We compared the statistical power for differentiating groups that was obtained when undertaking no averaging, vs. averaging data from 2, 4, or 8 source detector pairs. Results: Coherence was significantly reduced in the concussion group compared with controls when no averaging was undertaken. Averaging all 8 channel pairs before undertaking the coherence analysis resulted in no group differences. Conclusions: Averaging between fiber pairs may eliminate the ability to detect group differences. It is proposed that even adjacent fiber pairs may have unique information, so averaging must be done with caution when monitoring brain disorders or injury.

7.
Pediatrics ; 152(2)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37455662

RESUMO

OBJECTIVES: This study investigated IQ scores in pediatric concussion (ie, mild traumatic brain injury) versus orthopedic injury. METHODS: Children (N = 866; aged 8-16.99 years) were recruited for 2 prospective cohort studies from emergency departments at children's hospitals (2 sites in the United States and 5 in Canada) ≤48 hours after sustaining a concussion or orthopedic injury. They completed IQ and performance validity testing postacutely (3-18 days postinjury; United States) or 3 months postinjury (Canada). Group differences in IQ scores were examined using 3 complementary statistical approaches (linear modeling, Bayesian, and multigroup factor analysis) in children performing above cutoffs on validity testing. RESULTS: Linear models showed small group differences in full-scale IQ (d [95% confidence interval] = 0.13 [0.00-0.26]) and matrix reasoning (0.16 [0.03-0.30]), but not in vocabulary scores. IQ scores were not related to previous concussion, acute clinical features, injury mechanism, a validated clinical risk score, pre- or postinjury symptom ratings, litigation, or symptomatic status at 1 month postinjury. Bayesian models provided moderate to very strong evidence against group differences in IQ scores (Bayes factor 0.02-0.23). Multigroup factor analysis further demonstrated strict measurement invariance, indicating group equivalence in factor structure of the IQ test and latent variable means. CONCLUSIONS: Across multisite, prospective study cohorts, 3 complementary statistical models provided no evidence of clinically meaningful differences in IQ scores after pediatric concussion. Instead, overall results provided strong evidence against reduced intelligence in the first few weeks to months after pediatric concussion.


Assuntos
Concussão Encefálica , Síndrome Pós-Concussão , Humanos , Criança , Concussão Encefálica/diagnóstico , Concussão Encefálica/epidemiologia , Estudos Prospectivos , Teorema de Bayes , Fatores de Risco , Canadá
8.
Brain Commun ; 5(3): fcad173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324241

RESUMO

Advanced diffusion-weighted imaging techniques have increased understanding of the neuropathology of paediatric mild traumatic brain injury (i.e. concussion). Most studies have examined discrete white-matter pathways, which may not capture the characteristically subtle, diffuse and heterogenous effects of paediatric concussion on brain microstructure. This study compared the structural connectome of children with concussion to those with mild orthopaedic injury to determine whether network metrics and their trajectories across time post-injury differentiate paediatric concussion from mild traumatic injury more generally. Data were drawn from of a large study of outcomes in paediatric concussion. Children aged 8-16.99 years were recruited from five paediatric emergency departments within 48 h of sustaining a concussion (n = 360; 56% male) or mild orthopaedic injury (n = 196; 62% male). A reliable change score was used to classify children with concussion into two groups: concussion with or without persistent symptoms. Children completed 3 T MRI at post-acute (2-33 days) and/or chronic (3 or 6 months, via random assignment) post-injury follow-ups. Diffusion-weighted images were used to calculate the diffusion tensor, conduct deterministic whole-brain fibre tractography and compute connectivity matrices in native (diffusion) space for 90 supratentorial regions. Weighted adjacency matrices were constructed using average fractional anisotropy and used to calculate global and local (regional) graph theory metrics. Linear mixed effects modelling was performed to compare groups, correcting for multiple comparisons. Groups did not differ in global network metrics. However, the clustering coefficient, betweenness centrality and efficiency of the insula, cingulate, parietal, occipital and subcortical regions differed among groups, with differences moderated by time (days) post-injury, biological sex and age at time of injury. Post-acute differences were minimal, whereas more robust alterations emerged at 3 and especially 6 months in children with concussion with persistent symptoms, albeit differently by sex and age. In the largest neuroimaging study to date, post-acute regional network metrics distinguished concussion from mild orthopaedic injury and predicted symptom recovery 1-month post-injury. Regional network parameters alterations were more robust and widespread at chronic timepoints than post-acutely after concussion. Results suggest that increased regional and local subnetwork segregation (modularity) and inefficiency occurs across time after concussion, emerging after post-concussive symptom resolve in most children. These differences persist up to 6 months after concussion, especially in children who showed persistent symptoms. While prognostic, the small to modest effect size of group differences and the moderating effects of sex likely would preclude effective clinical application in individual patients.

9.
Neurology ; 101(7): e728-e739, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37353339

RESUMO

BACKGROUND AND OBJECTIVES: This prospective, longitudinal cohort study examined trajectories of brain gray matter macrostructure after pediatric mild traumatic brain injury (mTBI). METHODS: Children aged 8-16.99 years with mTBI or mild orthopedic injury (OI) were recruited from 5 pediatric emergency departments. Reliable change between preinjury and 1 month postinjury symptom ratings was used to classify mTBI with or without persistent symptoms. Children completed postacute (2-33 days) and/or chronic (3 or 6 months) postinjury T1-weighted MRI, from which macrostructural metrics were derived using automated segmentation. Linear mixed-effects models were used, with multiple comparisons correction. RESULTS: Groups (N = 623; 407 mTBI/216 OI; 59% male; age mean = 12.03, SD = 2.38 years) did not differ in total brain, white, or gray matter volumes or regional subcortical gray matter volumes. However, time postinjury, age at injury, and biological sex-moderated differences among symptom groups in cortical thickness of the angular gyrus, basal forebrain, calcarine cortex, gyrus rectus, medial and posterior orbital gyrus, and the subcallosal area all corrected p < 0.05. Gray matter macrostructural metrics did not differ between groups postacutely. However, cortical thinning emerged chronically after mTBI relative to OI in the angular gyrus in older children (d [95% confidence interval] = -0.61 [-1.15 to -0.08]); and in the basal forebrain (-0.47 [-0.94 to -0.01]), subcallosal area (-0.55 [-1.01 to -0.08]), and the posterior orbital gyrus (-0.55 [-1.02 to -0.08]) in females. Cortical thinning was demonstrated for frontal and occipital regions 3 months postinjury in males with mTBI with persistent symptoms vs without persistent symptoms (-0.80 [-1.55 to -0.05] to -0.83 [-1.56 to -0.10]) and 6 months postinjury in females and younger children with mTBI with persistent symptoms relative to mTBI without persistent symptoms and OI (-1.42 [-2.29 to -0.45] to -0.91 [-1.81 to -0.01]). DISCUSSION: These findings signal little diagnostic and prognostic utility of postacute gray matter macrostructure in pediatric mTBI. However, mTBI altered the typical course of cortical gray matter thinning up to 6 months postinjury, even after symptoms typically abate in most children. Collapsing across symptom status obscured the neurobiological heterogeneity of discrete clinical outcomes after pediatric mTBI. The results illustrate the need to examine neurobiology in relation to clinical outcomes and within a neurodevelopmental framework.


Assuntos
Concussão Encefálica , Lesões Encefálicas , Feminino , Humanos , Masculino , Criança , Concussão Encefálica/diagnóstico por imagem , Estudos Longitudinais , Estudos Prospectivos , Substância Cinzenta/diagnóstico por imagem , Afinamento Cortical Cerebral
10.
Alzheimers Dement (N Y) ; 9(1): e12371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36698771

RESUMO

Background: Mild behavioral impairment (MBI) is a syndrome that uses later-life emergent and persistent neuropsychiatric symptoms (NPS) to identify a group at high risk for incident dementia. MBI is associated with neurodegenerative disease markers in advance of syndromic dementia. Functional connectivity (FC) correlates of MBI are understudied and could provide further insights into mechanisms early in the disease course. We used resting-state functional magnetic resonance imaging (rs-fMRI) to test the hypothesis that FC within the default mode network (DMN) and salience network (SN) of persons with MBI (MBI+) is reduced, relative to those without (MBI-). Methods: From two harmonized dementia-free cohort studies, using a score of ≥6 on the MBI Checklist to define MBI status, 32 MBI+ and 63 MBI- individuals were identified (mean age: 71.7 years; 54.7% female). Seed-based connectivity analysis was implemented in each MBI group using the CONN fMRI toolbox (v20.b), with the posterior cingulate cortex (PCC) as the seed region within the DMN and anterior cingulate cortex (ACC) as the seed within the SN. The average time series from the PCC and ACC were used to determine FC with other regions within the DMN (medial prefrontal cortex, lateral inferior parietal cortex) and SN (anterior insula, supramarginal gyrus, rostral prefrontal cortex), respectively. Age, sex, years of education, and Montreal Cognitive Assessment scores were included as model covariates. The false discovery rate approach was used to correct for multiple comparisons, with a p-value of .05 considered significant. Results: For the DMN, MBI+ individuals exhibited reduced FC between the PCC and the medial prefrontal cortex, compared to MBI-. For the SN, MBI+ individuals exhibited reduced FC between the ACC and left anterior insula. Conclusion: MBI in dementia-free older adults is associated with reduced FC in networks known to be disrupted in dementia. Our results complement the evidence linking MBI with Alzheimer's disease biomarkers. Highlights: Resting-state functional magnetic resonance imaging was completed in 95 dementia-free persons from FAVR and COMPASS-ND studies.Participants were stratified by informant-rated Mild Behavioral Impairment Checklist (MBI-C) score, ≥6 for MBI+.MBI+ participants showed reduced functional connectivity (FC) within the default mode network and salience network.These FC changes are consistent with those seen in early-stage Alzheimer's disease.MBI may help identify persons with early-stage neurodegenerative disease.

11.
Brain Lang ; 236: 105216, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36525719

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) shows promise in improving speech production in post-stroke aphasia. Limited evidence suggests pairing rTMS with speech therapy may result in greater improvements. Twenty stroke survivors (>6 months post-stroke) were randomized to receive either sham rTMS plus multi-modality aphasia therapy (M-MAT) or rTMS plus M-MAT. For the first time, we demonstrate that rTMS combined with M-MAT is feasible, with zero adverse events and minimal attrition. Both groups improved significantly over time on all speech and language outcomes. However, improvements did not differ between rTMS or sham. We found that rTMS and sham groups differed in lesion location, which may explain speech and language outcomes as well as unique patterns of BOLD signal change within each group. We offer practical considerations for future studies and conclude that while combination therapy of rTMS plus M-MAT in chronic post-stroke aphasia is safe and feasible, personalized intervention may be necessary.


Assuntos
Afasia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Estimulação Magnética Transcraniana , Projetos Piloto , Afasia/etiologia , Afasia/terapia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Fonoterapia , Dano Encefálico Crônico , Resultado do Tratamento
12.
Mol Psychiatry ; 28(3): 1182-1189, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36434057

RESUMO

Progressive grey matter loss has been demonstrated among clinical high-risk (CHR) individuals who convert to psychosis, but it is unknown whether these changes occur prior to psychosis onset. Identifying illness-related neurobiological mechanisms that occur prior to conversion is essential for targeted early intervention. Among participants in the third wave of the North American Prodrome Longitudinal Study (NAPLS3), this report investigated if steeper cortical thinning was observable prior to psychosis onset among CHR individuals who ultimately converted (CHR-C) and assessed the shortest possible time interval in which rates of cortical thinning differ between CHR-C, CHR non-converters (CHR-NC), and health controls (HC). 338 CHR-NC, 42 CHR-C, and 62 HC participants (age 19.3±4.2, 44.8% female, 52.5% racial/ethnic minority) completed up to 5 MRI scans across 8 months. Accelerated thinning among CHR-C compared to CHR-NC and HC was observed in multiple prefrontal, temporal, and parietal cortical regions. CHR-NC also exhibited accelerated cortical thinning compared to HC in several of these areas. Greater percent decrease in cortical thickness was observed among CHR-C compared to other groups across 2.9±1.8 months, on average, in several cortical areas. ROC analyses discriminating CHR-C from CHR-NC by percent thickness change in a left hemisphere region of interest, scanner, age, age2, and sex had an AUC of 0.74, with model predictive power driven primarily by percent thickness change. Findings indicate that accelerated cortical thinning precedes psychosis onset and differentiates CHR-C from CHR-NC and HC across short time intervals. Mechanisms underlying cortical thinning may provide novel treatment targets prior to psychosis onset.


Assuntos
Afinamento Cortical Cerebral , Transtornos Psicóticos , Humanos , Feminino , Adolescente , Masculino , Estudos Longitudinais , Etnicidade , Grupos Minoritários , Sintomas Prodrômicos
13.
Inflamm Bowel Dis ; 29(3): 405-416, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35590449

RESUMO

BACKGROUND: Behavioral symptoms, including mood disorders, substantially impact the quality of life of patients with inflammatory bowel disease (IBD), even when clinical remission is achieved. Here, we used multimodal magnetic resonance imaging (MRI) to determine if IBD is associated with changes in the structure and function of deep gray matter brain regions that regulate and integrate emotional, cognitive, and stress responses. METHODS: Thirty-five patients with ulcerative colitis (UC) or Crohn's disease (CD) and 32 healthy controls underwent 3 Tesla MRIs to assess volume, neural activity, functional connection strength (connectivity), inflammation, and neurodegeneration of key deep gray matter brain regions (thalamus, caudate, pallidum, putamen, amygdala, hippocampus, and hypothalamus) involved in emotional, cognitive and stress processing. Associations with sex, presence of pain, disease activity, and C-reactive protein (CRP) concentration were examined. RESULTS: Significantly increased activity and functional connectivity were observed in cognitive and emotional processing brain regions, including parts of the limbic system, basal ganglia, and hypothalamus of IBD patients compared with healthy controls. Inflammatory bowel disease patients exhibited significantly increased volumes of the amygdala and hypothalamus, as well as evidence of neurodegeneration in the putamen and pallidum. Hippocampal neural activity was increased in IBD patients with active disease. The volume of the thalamus was positively correlated with CRP concentration and was increased in females experiencing pain. CONCLUSIONS: Patients with IBD exhibit functional and structural changes in the limbic and striatal systems. These changes may be targets for assessing or predicting the response to therapeutic interventions aimed at improving comorbid emotional and cognitive symptoms.


Magnetic resonance imaging revealed structural and functional changes within the brains of inflammatory bowel disease patients, in regions known to be involved in processing brain signals associated with behavioral symptoms, anxiety, pain, stress, and cognitive deficits.


Assuntos
Colite Ulcerativa , Substância Cinzenta , Feminino , Humanos , Substância Cinzenta/patologia , Qualidade de Vida , Encéfalo , Imageamento por Ressonância Magnética/métodos , Colite Ulcerativa/patologia , Dor
14.
Front Hum Neurosci ; 16: 976013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337852

RESUMO

Magnetic resonance imaging (MRI) can provide a number of measurements relevant to sport-related concussion (SRC) symptoms; however, most studies to date have used a single MRI modality and whole-brain exploratory analyses in attempts to localize concussion injury. This has resulted in highly variable findings across studies due to wide ranging symptomology, severity and nature of injury within studies. A multimodal MRI, symptom-guided region-of-interest (ROI) approach is likely to yield more consistent results. The functions of the cerebellum and basal ganglia transcend many common concussion symptoms, and thus these regions, plus the white matter tracts that connect or project from them, constitute plausible ROIs for MRI analysis. We performed diffusion tensor imaging (DTI), resting-state functional MRI, quantitative susceptibility mapping (QSM), and cerebral blood flow (CBF) imaging using arterial spin labeling (ASL), in youth aged 12-18 years following SRC, with a focus on the cerebellum, basal ganglia and white matter tracts. Compared to controls similar in age, sex and sport (N = 20), recent SRC youth (N = 29; MRI at 8 ± 3 days post injury) exhibited increased susceptibility in the cerebellum (p = 0.032), decreased functional connectivity between the caudate and each of the pallidum (p = 0.035) and thalamus (p = 0.021), and decreased diffusivity in the mid-posterior corpus callosum (p < 0.038); no changes were observed in recovered asymptomatic youth (N = 16; 41 ± 16 days post injury). For recent symptomatic-only SRC youth (N = 24), symptom severity was associated with increased susceptibility in the superior cerebellar peduncles (p = 0.011) and reduced activity in the cerebellum (p = 0.013). Fewer days between injury and MRI were associated with reduced cerebellar-parietal functional connectivity (p < 0.014), reduced activity of the pallidum (p = 0.002), increased CBF in the caudate (p = 0.005), and reduced diffusivity in the central corpus callosum (p < 0.05). Youth SRC is associated with acute cerebellar inflammation accompanied by reduced cerebellar activity and cerebellar-parietal connectivity, as well as structural changes of the middle regions of the corpus callosum accompanied by functional changes of the caudate, all of which resolve with recovery. Early MRI post-injury is important to establish objective MRI-based indicators for concussion diagnosis, recovery assessment and prediction of outcome.

15.
Front Neurol ; 13: 850642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35785336

RESUMO

The analysis of large, multisite neuroimaging datasets provides a promising means for robust characterization of brain networks that can reduce false positives and improve reproducibility. However, the use of different MRI scanners introduces variability to the data. Managing those sources of variability is increasingly important for the generation of accurate group-level inferences. ComBat is one of the most promising tools for multisite (multiscanner) harmonization of structural neuroimaging data, but no study has examined its application to graph theory metrics derived from the structural brain connectome. The present work evaluates the use of ComBat for multisite harmonization in the context of structural network analysis of diffusion-weighted scans from the Advancing Concussion Assessment in Pediatrics (A-CAP) study. Scans were acquired on six different scanners from 484 children aged 8.00-16.99 years [Mean = 12.37 ± 2.34 years; 289 (59.7%) Male] ~10 days following mild traumatic brain injury (n = 313) or orthopedic injury (n = 171). Whole brain deterministic diffusion tensor tractography was conducted and used to construct a 90 x 90 weighted (average fractional anisotropy) adjacency matrix for each scan. ComBat harmonization was applied separately at one of two different stages during data processing, either on the (i) weighted adjacency matrices (matrix harmonization) or (ii) global network metrics derived using unharmonized weighted adjacency matrices (parameter harmonization). Global network metrics based on unharmonized adjacency matrices and each harmonization approach were derived. Robust scanner effects were found for unharmonized metrics. Some scanner effects remained significant for matrix harmonized metrics, but effect sizes were less robust. Parameter harmonized metrics did not differ by scanner. Intraclass correlations (ICC) indicated good to excellent within-scanner consistency between metrics calculated before and after both harmonization approaches. Age correlated with unharmonized network metrics, but was more strongly correlated with network metrics based on both harmonization approaches. Parameter harmonization successfully controlled for scanner variability while preserving network topology and connectivity weights, indicating that harmonization of global network parameters based on unharmonized adjacency matrices may provide optimal results. The current work supports the use of ComBat for removing multiscanner effects on global network topology.

16.
Hum Brain Mapp ; 43(12): 3809-3823, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35467058

RESUMO

In the largest sample studied to date, white matter microstructural trajectories and their relation to persistent symptoms were examined after pediatric mild traumatic brain injury (mTBI). This prospective, longitudinal cohort study recruited children aged 8-16.99 years with mTBI or mild orthopedic injury (OI) from five pediatric emergency departments. Children's pre-injury and 1-month post-injury symptom ratings were used to classify mTBI with or without persistent symptoms. Children completed diffusion-weighted imaging at post-acute (2-33 days post-injury) and chronic (3 or 6 months via random assignment) post-injury assessments. Mean diffusivity (MD) and fractional anisotropy (FA) were derived for 18 white matter tracts in 560 children (362 mTBI/198 OI), 407 with longitudinal data. Superior longitudinal fasciculus FA was higher in mTBI without persistent symptoms relative to OI, d (95% confidence interval) = 0.31 to 0.37 (0.02, 0.68), across time. In younger children, MD of the anterior thalamic radiations was higher in mTBI with persistent symptoms relative to both mTBI without persistent symptoms, 1.43 (0.59, 2.27), and OI, 1.94 (1.07, 2.81). MD of the arcuate fasciculus, -0.58 (-1.04, -0.11), and superior longitudinal fasciculus, -0.49 (-0.90, -0.09) was lower in mTBI without persistent symptoms relative to OI at 6 months post-injury. White matter microstructural changes suggesting neuroinflammation and axonal swelling occurred chronically and continued 6 months post injury in children with mTBI, especially in younger children with persistent symptoms, relative to OI. White matter microstructure appears more organized in children without persistent symptoms, consistent with their better clinical outcomes.


Assuntos
Concussão Encefálica , Substância Branca , Encéfalo/diagnóstico por imagem , Concussão Encefálica/diagnóstico por imagem , Criança , Imagem de Tensor de Difusão/métodos , Humanos , Estudos Longitudinais , Estudos Prospectivos , Substância Branca/diagnóstico por imagem
17.
J Neurosci Methods ; 368: 109470, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973273

RESUMO

Simultaneous EEG-fMRI is a growing and promising field, as it has great potential to further our understanding of the spatiotemporal dynamics of brain function in health and disease. In particular, there is much interest in understanding the fMRI correlates of brain activity in the gamma band (> 30 Hz), as these frequencies are thought to be associated with cognitive processes involving perception, attention, and memory, as well as with disorders such as schizophrenia and autism. However, progress in this area has been limited due to issues such as MR-induced artifacts in EEG recordings, which seem to be more problematic for gamma frequencies. This paper presents a noise removal method for the gamma band of EEG that is based on the Holo-Hilbert spectral analysis (HHSA), but with a new implementation strategy. HHSA uses a nested empirical mode decomposition (EMD) to identify amplitude and frequency modulations (AM and FM, respectively) by averaging over frequencies with high and significant powers. Our method examines gamma band by applying two layers of EMD to the FM and AM components, removing components with very low power based on the power-instantaneous frequency spectrum, and subsequently reconstructs the denoised gamma-band signal from the remaining components. Simulations demonstrate that our proposed method efficiently reduces artifacts while preserving the original gamma signal which is especially critical for simultaneous EEG/fMRI studies.


Assuntos
Artefatos , Eletroencefalografia , Atenção , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador
18.
Brain Imaging Behav ; 16(3): 991-1002, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34694520

RESUMO

Motion can compromise image quality and confound results, especially in pediatric research. This study evaluated qualitative and quantitative approaches to motion artifacts detection and correction, and whether motion artifacts relate to injury history, age, or sex in children with mild traumatic brain injury or orthopedic injury relative to typically developing children. The concordance between qualitative and quantitative motion ratings was also examined. Children aged 8-16 years with mild traumatic brain injury (n = 141) or orthopedic injury (n = 73) were recruited from the emergency department and completed an MRI scan roughly 2 weeks post-injury. Typically developing children (n = 41) completed a single MRI scan. T1- and diffusion-weighted images were visually inspected and rated for motion artifacts by trained examiners. Quantitative estimates of motion artifacts were derived from FreeSurfer and FSL. Age (younger > older) and sex (boys > girls) were significantly associated with motion artifacts on both T1- and diffusion-weighted images. Children with mild traumatic brain or orthopedic injury had significantly more motion-corrupted diffusion-weighted volumes than typically developing children, but mild traumatic brain injury and orthopedic injury groups did not differ from each other. The exclusion of motion-corrupted volumes did not significantly change diffusion tensor imaging metrics. Results indicate that automated quantitative estimates of motion artifacts, which are less labour-intensive than manual methods, are appropriate. Results have implications for the reliability of structural MRI research and highlight the importance of considering motion artifacts in studies of pediatric mild traumatic brain injury.


Assuntos
Artefatos , Concussão Encefálica , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/patologia , Criança , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Movimento (Física) , Reprodutibilidade dos Testes
19.
Hum Brain Mapp ; 43(3): 1032-1046, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34748258

RESUMO

Sophisticated network-based approaches such as structural connectomics may help to detect a biomarker of mild traumatic brain injury (mTBI) in children. This study compared the structural connectome of children with mTBI or mild orthopedic injury (OI) to that of typically developing (TD) children. Children aged 8-16.99 years with mTBI (n = 83) or OI (n = 37) were recruited from the emergency department and completed 3T diffusion MRI 2-20 days postinjury. TD children (n = 39) were recruited from the community and completed diffusion MRI. Graph theory metrics were calculated for the binarized average fractional anisotropy among 90 regions. Multivariable linear regression and linear mixed effects models were used to compare groups, with covariates age, hemisphere, and sex, correcting for multiple comparisons. The two injury groups did not differ on graph theory metrics, but both differed from TD children in global metrics (local network efficiency: TD > OI, mTBI, d = 0.49; clustering coefficient: TD < OI, mTBI, d = 0.49) and regional metrics for the fusiform gyrus (lower degree centrality and nodal efficiency: TD > OI, mTBI, d = 0.80 to 0.96; characteristic path length: TD < OI, mTBI, d = -0.75 to -0.90) and in the superior and middle orbital frontal gyrus, paracentral lobule, insula, and thalamus (clustering coefficient: TD > OI, mTBI, d = 0.66 to 0.68). Both mTBI and OI demonstrated reduced global and regional network efficiency and segregation as compared to TD children. Findings suggest a general effect of childhood injury that could reflect pre- and postinjury factors that can alter brain structure. An OI group provides a more conservative comparison group than TD children for structural neuroimaging research in pediatric mTBI.


Assuntos
Concussão Encefálica/patologia , Encéfalo/patologia , Imagem de Tensor de Difusão , Fraturas Ósseas/patologia , Rede Nervosa/patologia , Entorses e Distensões/patologia , Adolescente , Encéfalo/diagnóstico por imagem , Concussão Encefálica/diagnóstico por imagem , Criança , Feminino , Fraturas Ósseas/diagnóstico por imagem , Humanos , Estudos Longitudinais , Masculino , Rede Nervosa/diagnóstico por imagem , Entorses e Distensões/diagnóstico por imagem
20.
Neuroimage Clin ; 32: 102887, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34911193

RESUMO

BACKGROUND: Pediatric mild traumatic brain injury (mTBI) affects millions of children annually. Diffusion tensor imaging (DTI) is sensitive to axonal injuries and white matter microstructure and has been used to characterize the brain changes associated with mild traumatic brain injury (mTBI). Neurite orientation dispersion and density imaging (NODDI) is a diffusion model that can provide additional insight beyond traditional DTI metrics, but has not been examined in pediatric mTBI. The goal of this study was to employ DTI and NODDI to gain added insight into white matter alterations in children with mTBI compared to children with mild orthopedic injury (OI). METHODS: Children (mTBI n = 320, OI n = 176) aged 8-16.99 years (12.39 ± 2.32 years) were recruited from emergency departments at five hospitals across Canada and underwent 3 T MRI on average 11 days post-injury. DTI and NODDI metrics were calculated for seven major white matter tracts and compared between groups using univariate analysis of covariance controlling for age, sex, and scanner type. False discovery rate (FDR) was used to correct for multiple comparisons. RESULTS: Univariate analysis revealed no significant group main effects or interactions in DTI or NODDI metrics. Fractional anisotropy and neurite density index in all tracts exhibited a significant positive association with age and mean diffusivity in all tracts exhibited a significant negative association with age in the whole sample. CONCLUSIONS: Overall, there were no significant differences between mTBI and OI groups in brain white matter microstructure from either DTI or NODDI in the seven tracts. This indicates that mTBI is associated with relatively minor white matter differences, if any, at the post-acute stage. Brain differences may evolve at later stages of injury, so longitudinal studies with long-term follow-up are needed.


Assuntos
Concussão Encefálica , Substância Branca , Encéfalo/diagnóstico por imagem , Concussão Encefálica/diagnóstico por imagem , Criança , Imagem de Tensor de Difusão , Humanos , Neuritos , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...