Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(13): 9095-9119, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37399505

RESUMO

The allosteric inhibitor of the mechanistic target of rapamycin (mTOR) everolimus reduces seizures in tuberous sclerosis complex (TSC) patients through partial inhibition of mTOR functions. Due to its limited brain permeability, we sought to develop a catalytic mTOR inhibitor optimized for central nervous system (CNS) indications. We recently reported an mTOR inhibitor (1) that is able to block mTOR functions in the mouse brain and extend the survival of mice with neuronal-specific ablation of the Tsc1 gene. However, 1 showed the risk of genotoxicity in vitro. Through structure-activity relationship (SAR) optimization, we identified compounds 9 and 11 without genotoxicity risk. In neuronal cell-based models of mTOR hyperactivity, both corrected aberrant mTOR activity and significantly improved the survival rate of mice in the Tsc1 gene knockout model. Unfortunately, 9 and 11 showed limited oral exposures in higher species and dose-limiting toxicities in cynomolgus macaque, respectively. However, they remain optimal tools to explore mTOR hyperactivity in CNS disease models.


Assuntos
Inibidores de MTOR , Sirolimo , Camundongos , Animais , Síndrome , Sistema Nervoso Central/metabolismo , Encéfalo/metabolismo , Serina-Treonina Quinases TOR , Trifosfato de Adenosina
2.
Nat Commun ; 13(1): 6427, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329007

RESUMO

Postsynaptic density is reduced in schizophrenia, and risk variants increasing complement component 4A (C4A) gene expression are linked to excessive synapse elimination. In two independent cohorts, we show that cerebrospinal fluid (CSF) C4A concentration is elevated in patients with first-episode psychosis (FEP) who develop schizophrenia (FEP-SCZ: median 0.41 fmol/ul [CI = 0.34-0.45], FEP-non-SCZ: median 0.29 fmol/ul [CI = 0.22-0.35], healthy controls: median 0.28 [CI = 0.24-0.33]). We show that the CSF elevation of C4A in FEP-SCZ exceeds what can be expected from genetic risk variance in the C4 locus, and in patient-derived cellular models we identify a mechanism dependent on the disease-associated cytokines interleukin (IL)-1beta and IL-6 to selectively increase neuronal C4A mRNA expression. In patient-derived CSF, we confirm that IL-1beta correlates with C4A controlled for genetically predicted C4A RNA expression (r = 0.39; CI: 0.01-0.68). These results suggest a role of C4A in early schizophrenia pathophysiology.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Complemento C4a/genética , Complemento C4a/líquido cefalorraquidiano , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transtornos Psicóticos/genética , Fatores de Risco
3.
Nat Med ; 26(12): 1888-1898, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32989314

RESUMO

22q11.2 deletion syndrome (22q11DS) is a highly penetrant and common genetic cause of neuropsychiatric disease. Here we generated induced pluripotent stem cells from 15 individuals with 22q11DS and 15 control individuals and differentiated them into three-dimensional (3D) cerebral cortical organoids. Transcriptional profiling across 100 days showed high reliability of differentiation and revealed changes in neuronal excitability-related genes. Using electrophysiology and live imaging, we identified defects in spontaneous neuronal activity and calcium signaling in both organoid- and 2D-derived cortical neurons. The calcium deficit was related to resting membrane potential changes that led to abnormal inactivation of voltage-gated calcium channels. Heterozygous loss of DGCR8 recapitulated the excitability and calcium phenotypes and its overexpression rescued these defects. Moreover, the 22q11DS calcium abnormality could also be restored by application of antipsychotics. Taken together, our study illustrates how stem cell derived models can be used to uncover and rescue cellular phenotypes associated with genetic forms of neuropsychiatric disease.


Assuntos
Sinalização do Cálcio/genética , Córtex Cerebral/ultraestrutura , Síndrome de DiGeorge/diagnóstico , Neurônios/ultraestrutura , Adulto , Diferenciação Celular/genética , Córtex Cerebral/patologia , Síndrome de DiGeorge/patologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Masculino , Neurônios/patologia , Organoides/patologia , Organoides/ultraestrutura , Adulto Jovem
4.
J Med Chem ; 63(3): 1068-1083, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31955578

RESUMO

Recent clinical evaluation of everolimus for seizure reduction in patients with tuberous sclerosis complex (TSC), a disease with overactivated mechanistic target of rapamycin (mTOR) signaling, has demonstrated the therapeutic value of mTOR inhibitors for central nervous system (CNS) indications. Given that everolimus is an incomplete inhibitor of the mTOR function, we sought to develop a new mTOR inhibitor that has improved properties and is suitable for CNS disorders. Starting from an in-house purine-based compound, optimization of the physicochemical properties of a thiazolopyrimidine series led to the discovery of the small molecule 7, a potent and selective brain-penetrant ATP-competitive mTOR inhibitor. In neuronal cell-based models of mTOR hyperactivity, 7 corrected the mTOR pathway activity and the resulting neuronal overgrowth phenotype. The new mTOR inhibitor 7 showed good brain exposure and significantly improved the survival rate of mice with neuronal-specific ablation of the Tsc1 gene. These results demonstrate the potential utility of this tool compound to test therapeutic hypotheses that depend on mTOR hyperactivity in the CNS.


Assuntos
Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Convulsões/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Tiazóis/uso terapêutico , Animais , Anticonvulsivantes/metabolismo , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/uso terapêutico , Sítios de Ligação , Encéfalo/efeitos dos fármacos , Descoberta de Drogas , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Ratos , Serina-Treonina Quinases TOR/química , Serina-Treonina Quinases TOR/metabolismo , Tiazóis/metabolismo , Tiazóis/farmacocinética , Proteína 1 do Complexo Esclerose Tuberosa/genética
5.
Nat Neurosci ; 22(3): 374-385, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30718903

RESUMO

Synapse density is reduced in postmortem cortical tissue from schizophrenia patients, which is suggestive of increased synapse elimination. Using a reprogrammed in vitro model of microglia-mediated synapse engulfment, we demonstrate increased synapse elimination in patient-derived neural cultures and isolated synaptosomes. This excessive synaptic pruning reflects abnormalities in both microglia-like cells and synaptic structures. Further, we find that schizophrenia risk-associated variants within the human complement component 4 locus are associated with increased neuronal complement deposition and synapse uptake; however, they do not fully explain the observed increase in synapse uptake. Finally, we demonstrate that the antibiotic minocycline reduces microglia-mediated synapse uptake in vitro and its use is associated with a modest decrease in incident schizophrenia risk compared to other antibiotics in a cohort of young adults drawn from electronic health records. These findings point to excessive pruning as a potential target for delaying or preventing the onset of schizophrenia in high-risk individuals.


Assuntos
Microglia/fisiologia , Plasticidade Neuronal , Esquizofrenia/fisiopatologia , Sinapses/fisiologia , Adolescente , Adulto , Idoso , Antibacterianos/administração & dosagem , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Microglia/efeitos dos fármacos , Pessoa de Meia-Idade , Minociclina/administração & dosagem , Células-Tronco Neurais/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Fatores de Risco , Sinapses/efeitos dos fármacos , Adulto Jovem
6.
Elife ; 52016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27458797

RESUMO

Dravet Syndrome is an intractable form of childhood epilepsy associated with deleterious mutations in SCN1A, the gene encoding neuronal sodium channel Nav1.1. Earlier studies using human induced pluripotent stem cells (iPSCs) have produced mixed results regarding the importance of Nav1.1 in human inhibitory versus excitatory neurons. We studied a Nav1.1 mutation (p.S1328P) identified in a pair of twins with Dravet Syndrome and generated iPSC-derived neurons from these patients. Characterization of the mutant channel revealed a decrease in current amplitude and hypersensitivity to steady-state inactivation. We then differentiated Dravet-Syndrome and control iPSCs into telencephalic excitatory neurons or medial ganglionic eminence (MGE)-like inhibitory neurons. Dravet inhibitory neurons showed deficits in sodium currents and action potential firing, which were rescued by a Nav1.1 transgene, whereas Dravet excitatory neurons were normal. Our study identifies biophysical impairments underlying a deleterious Nav1.1 mutation and supports the hypothesis that Dravet Syndrome arises from defective inhibitory neurons.


Assuntos
Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/patologia , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/deficiência , Neurônios/fisiologia , Telencéfalo/fisiologia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia
7.
JAMA Neurol ; 73(7): 836-845, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27159400

RESUMO

IMPORTANCE: Focal cortical dysplasia (FCD), hemimegalencephaly, and megalencephaly constitute a spectrum of malformations of cortical development with shared neuropathologic features. These disorders are associated with significant childhood morbidity and mortality. OBJECTIVE: To identify the underlying molecular cause of FCD, hemimegalencephaly, and diffuse megalencephaly. DESIGN, SETTING, AND PARTICIPANTS: Patients with FCD, hemimegalencephaly, or megalencephaly (mean age, 11.7 years; range, 2-32 years) were recruited from Pediatric Hospital A. Meyer, the University of Hong Kong, and Seattle Children's Research Institute from June 2012 to June 2014. Whole-exome sequencing (WES) was performed on 8 children with FCD or hemimegalencephaly using standard-depth (50-60X) sequencing in peripheral samples (blood, saliva, or skin) from the affected child and their parents and deep (150-180X) sequencing in affected brain tissue. Targeted sequencing and WES were used to screen 93 children with molecularly unexplained diffuse or focal brain overgrowth. Histopathologic and functional assays of phosphatidylinositol 3-kinase-AKT (serine/threonine kinase)-mammalian target of rapamycin (mTOR) pathway activity in resected brain tissue and cultured neurons were performed to validate mutations. MAIN OUTCOMES AND MEASURES: Whole-exome sequencing and targeted sequencing identified variants associated with this spectrum of developmental brain disorders. RESULTS: Low-level mosaic mutations of MTOR were identified in brain tissue in 4 children with FCD type 2a with alternative allele fractions ranging from 0.012 to 0.086. Intermediate-level mosaic mutation of MTOR (p.Thr1977Ile) was also identified in 3 unrelated children with diffuse megalencephaly and pigmentary mosaicism in skin. Finally, a constitutional de novo mutation of MTOR (p.Glu1799Lys) was identified in 3 unrelated children with diffuse megalencephaly and intellectual disability. Molecular and functional analysis in 2 children with FCD2a from whom multiple affected brain tissue samples were available revealed a mutation gradient with an epicenter in the most epileptogenic area. When expressed in cultured neurons, all MTOR mutations identified here drive constitutive activation of mTOR complex 1 and enlarged neuronal size. CONCLUSIONS AND RELEVANCE: In this study, mutations of MTOR were associated with a spectrum of brain overgrowth phenotypes extending from FCD type 2a to diffuse megalencephaly, distinguished by different mutations and levels of mosaicism. These mutations may be sufficient to cause cellular hypertrophy in cultured neurons and may provide a demonstration of the pattern of mosaicism in brain and substantiate the link between mosaic mutations of MTOR and pigmentary mosaicism in skin.


Assuntos
Malformações do Desenvolvimento Cortical/genética , Megalencefalia/genética , Mosaicismo , Mutação/genética , Serina-Treonina Quinases TOR/genética , Adolescente , Adulto , Aminoácidos/farmacologia , Animais , Células Cultivadas , Córtex Cerebral/citologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/genética , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Estudos de Associação Genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Masculino , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Alvo Mecanístico do Complexo 1 de Rapamicina , Megalencefalia/diagnóstico por imagem , Complexos Multiproteicos/farmacologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Ratos , Estudos Retrospectivos , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Adulto Jovem
8.
Cell Rep ; 7(4): 1077-1092, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24794428

RESUMO

A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11(+/-)). We found elevated numbers of striatal medium spiny neurons (MSNs) expressing the dopamine D2 receptor (Drd2(+)) and fewer dopamine-sensitive (Drd1(+)) neurons in deep layers of cortex. Electrophysiological recordings of Drd2(+) MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11(+/-) mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11(+/-) mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism.


Assuntos
Transtorno Autístico/genética , Gânglios da Base/anormalidades , Deleção Cromossômica , Transtornos Cromossômicos/genética , Modelos Animais de Doenças , Deficiência Intelectual/genética , Transtornos Mentais/genética , Animais , Gânglios da Base/patologia , Cromossomos Humanos Par 16/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
9.
Neuron ; 68(3): 512-28, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21040851

RESUMO

Homeostatic processes have been proposed to explain the discrepancy between the dynamics of synaptic plasticity and the stability of brain function. Forms of synaptic plasticity such as long-term potentiation alter synaptic activity in a synapse- and cell-specific fashion. Although network-wide excitation triggers compensatory homeostatic changes, it is unknown whether neurons initiate homeostatic synaptic changes in response to cell-autonomous increases in excitation. Here we employ optogenetic tools to cell-autonomously excite CA1 pyramidal neurons and find that a compensatory postsynaptic depression of both AMPAR and NMDAR function results. Elevated calcium influx through L-type calcium channels leads to activation of a pathway involving CaM kinase kinase and CaM kinase 4 that induces synaptic depression of AMPAR and NMDAR responses. The synaptic depression of AMPARs but not of NMDARs requires protein synthesis and the GluA2 AMPAR subunit, indicating that downstream of CaM kinase activation divergent pathways regulate homeostatic AMPAR and NMDAR depression.


Assuntos
Homeostase/genética , Homeostase/fisiologia , Sinapses/fisiologia , Animais , Encéfalo/fisiologia , Região CA1 Hipocampal/fisiologia , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/fisiologia , Sinalização do Cálcio/genética , Sinalização do Cálcio/fisiologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/fisiologia , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/fisiologia , Channelrhodopsins , Eletrofisiologia , Inibidores Enzimáticos/farmacologia , Técnicas In Vitro , Camundongos , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp , Estimulação Luminosa , Biossíntese de Proteínas/fisiologia , Células Piramidais/fisiologia , Ratos , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia
10.
Neuron ; 56(1): 109-23, 2007 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-17920019

RESUMO

Inhibition of postsynaptic glutamate receptors at the Drosophila NMJ initiates a compensatory increase in presynaptic release termed synaptic homeostasis. BMP signaling is necessary for normal synaptic growth and stability. It remains unknown whether BMPs have a specific role during synaptic homeostasis and, if so, whether BMP signaling functions as an instructive retrograde signal that directly modulates presynaptic transmitter release. Here, we demonstrate that the BMP receptor (Wit) and ligand (Gbb) are necessary for the rapid induction of synaptic homeostasis. We also provide evidence that both Wit and Gbb have functions during synaptic homeostasis that are separable from NMJ growth. However, further genetic experiments demonstrate that Gbb does not function as an instructive retrograde signal during synaptic homeostasis. Rather, our data indicate that Wit and Gbb function via the downstream transcription factor Mad and that Mad-mediated signaling is continuously required during development to confer competence of motoneurons to express synaptic homeostasis.


Assuntos
Proteínas de Drosophila/fisiologia , Junção Neuromuscular/fisiologia , Transmissão Sináptica/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Nucleotídeos de Adenina/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Larva , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Mutagênese Sítio-Dirigida/métodos , Ácido Micofenólico/análogos & derivados , Ácido Micofenólico/metabolismo , Técnicas de Patch-Clamp/métodos , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia
11.
Neuron ; 52(4): 663-77, 2006 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-17114050

RESUMO

Homeostatic signaling systems are thought to interface with the mechanisms of neural plasticity to achieve stable yet flexible neural circuitry. However, the time course, molecular design, and implementation of homeostatic signaling remain poorly defined. Here we demonstrate that a homeostatic increase in presynaptic neurotransmitter release can be induced within minutes following postsynaptic glutamate receptor blockade. The rapid induction of synaptic homeostasis is independent of new protein synthesis and does not require evoked neurotransmission, indicating that a change in the efficacy of spontaneous quantal release events is sufficient to trigger the induction of synaptic homeostasis. Finally, both the rapid induction and the sustained expression of synaptic homeostasis are blocked by mutations that disrupt the pore-forming subunit of the presynaptic Ca(V)2.1 calcium channel encoded by cacophony. These data confirm the presynaptic expression of synaptic homeostasis and implicate presynaptic Ca(V)2.1 in a homeostatic retrograde signaling system.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Canais de Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Homeostase/genética , Junção Neuromuscular/metabolismo , Transmissão Sináptica/genética , Animais , Canais de Cálcio/genética , Canais de Cálcio Tipo N/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Mutação/genética , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/genética , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/genética , Membranas Sinápticas/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...