Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Radiol Prot ; 42(2)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35130534

RESUMO

Radioprotectors are agents that have the potential to act against radiation damage to cells. These are equally invaluable in radiation protection, both in intentional and unintentional radiation exposure. It is however, complex to use a universal radioprotector that could be beneficial in diverse contexts such as in radiotherapy, nuclear accidents, and space travel, as each of these circumstances have unique requirements. In a clinical setting such as in radiotherapy, a radioprotector is used to increase the efficacy of cancer treatment. The protective agent must act against radiation damage selectively in normal healthy cells while enhancing the radiation damage imparted on cancer cells. In the context of radiotherapy, plant-based compounds offer a more reliable solution over synthetic ones as the former are less expensive, less toxic, possess synergistic phytochemical activity, and are environmentally friendly. Phytochemicals with both radioprotective and anticancer properties may enhance the treatment efficacy by two-fold. Hence, plant based radioprotective agents offer a promising field to progress forward, and to expand the boundaries of radiation protection. This review is an account on radioprotective properties of phytochemicals and complications encountered in the development of the ideal radioprotector to be used as an adjunct in radiotherapy.


Assuntos
Exposição à Radiação , Proteção Radiológica , Protetores contra Radiação , Plantas , Protetores contra Radiação/uso terapêutico
2.
Blood Cells Mol Dis ; 88: 102535, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33461003

RESUMO

Myelodysplastic Syndromes (MDS) are hematological clonal disorders. Bone marrow (BM) mesenchymal stem cells (MSCs) interact with the haematopoietic stem and progenitor cells (HSPCs) to regulate haematopoiesis. We studied the genetic variation profiles of BM derived CD34+ HSPCs and MSCs of same patient in a South Asian de novo MDS cohort with 20 patients. A total of 42 genes (variants 471) and 38 genes (variants 232) were mutated in HSPCs and MSCs respectively and majority (97%) were distinct variants. Variants included both known and novel, with variants predicted as pathogenic. In both cell types, most frequently mutated genes were TET2, KDM6A, BCOR, EZH2 and ASXL. DNA methylation and chromatin remodeling were shown to be affected in both cell types with a high frequency. RNA splicing was affected more in HSPCs. Gene variants in the cohesion complex and epigenetic mechanisms were shown to co-exist. We report variant profile of MSCs and CD34+ HSPCs from a South Asian cohort, with novel variants with potential for further study as biomarkers in MDS. Distinct variants confined to each cellular compartment indicate that the genetic variations occur following lineage commitment.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Mutação , Síndromes Mielodisplásicas/genética , Adulto , Idoso , Células Cultivadas , Feminino , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA