Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 22020, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328558

RESUMO

Diamond is the hardest naturally occurring material found on earth but single crystal diamond is brittle due to the nature of catastrophic cleavage fracture. Polycrystalline diamond compact (PDC) materials are made by high pressure and high temperature (HPHT) technology. PDC materials have been widely used in several industries. Wear resistance is a key material property that has long been pursued for its valuable industrial applications. However, the inevitable use of catalysts introduced by the conventional manufacturing process significantly reduces their end-use performance and limits many of their potential applications. In this work, an ultra-strong catalyst-free polycrystalline diamond compact material has been successfully synthesized through innovative ultra-high pressure and ultra-high temperature (UHPHT) technology. These results set up new industry records for wear resistance and thermal stability for PDC cutters utilized for drilling in the oil and gas industry. The new material also broke all single-crystal diamond indenters, suggesting that the new material is too hard to be measured by the current standard single-crystal diamond indentation method. This represents a major breakthrough in hard materials that can expand many potential scientific research and industrial applications.

2.
Sensors (Basel) ; 17(10)2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29048391

RESUMO

In this paper we present a review of the application of two types of magnetic sensors-fluxgate magnetometers and nuclear magnetic resonance (NMR) sensors-in the oil/gas industry. These magnetic sensors play a critical role in drilling wells safely, accurately and efficiently into a target reservoir zone by providing directional data of the well and acquiring information about the surrounding geological formations. Research into magnetic sensors for oil/gas drilling has not been explored by researchers to the same extent as other applications, such as biomedical, magnetic storage and automotive/aerospace applications. Therefore, this paper aims to serve as an opportunity for researchers to truly understand how magnetic sensors can be used in a downhole environment and to provide fertile ground for research and development in this area. A look ahead, discussing other magnetic sensor technologies that can potentially be used in the oil/gas industry is presented, and what is still needed in order deploy them in the field is also addressed.

3.
Sensors (Basel) ; 16(9)2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27571084

RESUMO

The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads(®) demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead(®) SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 µm Dynabeads(®) travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 µm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device.


Assuntos
Técnicas Biossensoriais/instrumentação , Dispositivos Lab-On-A-Chip , Magnetismo/instrumentação , Microesferas , Desenho de Equipamento , Análise Numérica Assistida por Computador , Poliestirenos/química
4.
Biosens Bioelectron ; 67: 342-9, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25218198

RESUMO

Reported research work presents real time non-invasive detection of phthalates in spiked aqueous samples by employing electrochemical impedance spectroscopy (EIS) technique incorporating a novel interdigital capacitive sensor with multiple sensing thin film gold micro-electrodes fabricated on native silicon dioxide layer grown on semiconducting single crystal silicon wafer. The sensing surface was functionalized by a self-assembled monolayer of 3-aminopropyltrietoxysilane (APTES) with embedded molecular imprinted polymer (MIP) to introduce selectivity for the di(2-ethylhexyl) phthalate (DEHP) molecule. Various concentrations (1-100 ppm) of DEHP in deionized MilliQ water were tested using the functionalized sensing surface to capture the analyte. Frequency response analyzer (FRA) algorithm was used to obtain impedance spectra so as to determine sample conductance and capacitance for evaluation of phthalate concentration in the sample solution. Spectrum analysis algorithm interpreted the experimentally obtained impedance spectra by applying complex nonlinear least square (CNLS) curve fitting in order to obtain electrochemical equivalent circuit and corresponding circuit parameters describing the kinetics of the electrochemical cell. Principal component analysis was applied to deduce the effects of surface immobilized molecular imprinted polymer layer on the evaluated circuit parameters and its electrical response. The results obtained by the testing system were validated using commercially available high performance liquid chromatography diode array detector system.


Assuntos
Técnicas Biossensoriais , Ácidos Ftálicos/isolamento & purificação , Polímeros/química , Soluções/química , Espectroscopia Dielétrica , Dietilexilftalato/química , Ouro/química , Impressão Molecular , Ácidos Ftálicos/química , Propilaminas , Silanos/química , Dióxido de Silício/química , Água/química
5.
Biosensors (Basel) ; 4(3): 189-203, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25587418

RESUMO

This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials attractive for sensor applications. Our findings show that FeNi deposited with Mo or Al yields magnetically soft materials and that depositing with B further increases the softness. The out-of-plane magnetic anisotropy of FeNi thin films is reduced by depositing with Al and completely removed by depositing with B. The effect of depositing with Mo is dependent on the Mo concentration. The coercivity of FeNiMo and FeNiAl is reduced to less than a half of that of FeNi, and a value as low as 40 A/m is obtained for FeNiB. The surfaces of the obtained FeNiMo, FeNiAl and FeNiB thin films reveal very different morphologies. The surface of FeNiMo shows nano-cracks, while the FeNiAl films show large clusters and fewer nano-cracks. When FeNi is deposited with B, a very smooth morphology is obtained. The crystal structure of FeNiMo strongly depends on the depositant concentration and changes into an amorphous structure at a higher Mo level. FeNiAl thin films remain polycrystalline, even at a very high concentration of Al, and FeNiB films are amorphous, even at a very low concentration of B.

6.
PLoS One ; 8(11): e81227, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312280

RESUMO

Magnetic fluid hyperthermia (MFH) therapy uses the magnetic component of electromagnetic fields in the radiofrequency spectrum to couple energy to magnetic nanoparticles inside tumors. In MFH therapy, magnetic fluid is injected into tumors and an alternating current (AC) magnetic flux is applied to heat the magnetic fluid- filled tumor. If the temperature can be maintained at the therapeutic threshold of 42 °C for 30 minutes or more, the tumor cells can be destroyed. Analyzing the distribution of the magnetic fluid injected into tumors prior to the heating step in MFH therapy is an essential criterion for homogenous heating of tumors, since a decision can then be taken on the strength and localization of the applied external AC magnetic flux density needed to destroy the tumor without affecting healthy cells. This paper proposes a methodology for analyzing the distribution of magnetic fluid in a tumor by a specifically designed giant magnetoresistance (GMR) probe prior to MFH heat treatment. Experimental results analyzing the distribution of magnetic fluid suggest that different magnetic fluid weight densities could be estimated inside a single tumor by the GMR probe.


Assuntos
Fenômenos Magnéticos , Técnicas de Sonda Molecular , Neoplasias/patologia , Hipertermia Induzida , Neoplasias/terapia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA